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Mathematics for Engineers

This course is intended for students in the first year Engineering
courses in Sciences and Technology. Its objective is to provide basic
mathematical tools for this sector.

Elementary numerical functions as well as equations and
inequalities with a real variable correspond to the secondary school and
are assumed to be known.

We begin with a reminder of the algebraic notions relating to
functions in R. In the next chapter we present the notions of sequences,
series and convergences.

Chapter 3 presents basic functions, their properties and their
graphical representations which summarize some information about
these functions.

Chapter 4 treat the notions of limits and continuity and their
applications.

Chapter 5 presents the notion of derivation, approximations
(limited developments) and applications, as well as notion of
optimizations (minimum and maximum).

Chapter 6 deals with integral calculus and generalized integrals.

We end with a chapter on the ordinary differential equations of
order one then linear ordinary differential equations of order two with
constant coefficients.

In this document are included many corrected exercises to show
the interest and omnipresence of Mathematics in the various sciences
(physics, economics, etc.).



Notations:
Usual sets in mathematics

N : set of natural numbers

N* : set of natural numbers without zero

7, . set of relative numbers (positives, negatives or zero)

7, . set of relative numbers without zero (positives or negatives)
() : set of rational numbers (§ such that p ¢ Z and p € V)
R
R
R

. set of real numbers
: set of natural numbers without zero
: set of complexe numbers

*

Intervals
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1st chap. : Properties of the R set

1l  EXTREME VALUES

1.1.Upper bound, lower bound

Definition:
If A C R not empty.

e Avreal Mis a majorant (or upper bound ) of AifNx € A : x < M.
e Avreal mis a minorant (orlower bound ) of A ifVx € A : > m.

If an upper bound (resp. a lower bound) of A exists, we say that A is
upper bound (resp. lower bound).

There is not always a majorant or a minorant, in addition we do not
have uniqueness.

Examples
1) 3 is an upper bound of ]0, 2[;

2)—7,—m,0 are minors of |0, +oc[ but there is no upper bound.

3) Let A= [0, 1]. ' 5 A ; majorants
0 1

a). upper bounds of A are exactly the elements of [1, +oo],

b). lower bounds of A are exactly the elements of | — oo, 0).

1.2. Infimum, Supremum

Definition:
If A C R not empty.

e The supremum of A is the smallest upper bound. We note : sup A.

e The infimum of A is the largest lower bound. We note : inf A.

Examples
A=10, 1] : . A . majorans
’ E' 1
1)infA=mind=1 2) sup A = 1, but max A does not exist.



1.3.Maximum, minimum

Definition:
Let be A C R not empty.

e Avreal Mis a maximum (or greatest element) of A if:

MeA andVere A : =z <M.
If it exists, the greatest element is unique, then we note M := max A.
e The minimum (or smallest element) m of A, is defined by

meA, andVe e A : x> m.
If it exists, the smallest element is unique, then we note m := min A,

Netice : the maximum or minimum does not always exist.

Examples
1) max[a,b] = b , minfa,b] = a.

2) The interval ]a, b[ does not have maximum, nor minimum. (However, it is
bounded).

3) min[0, 1[= 0 but max]0, 1] does not exist.

Bounded set:

e Any subset A C R, nonempty and upper bounded admits a
supremum

e Any subset A C R nonempty and lower bounded admits a infimum.

Netice :

This is the whole point of the supremum (resp. infimum) compared to the
maximum (resp. minimum) : as soon as a part is bounded it always admits a
supremum and a infimum; which is not the case for the maximum and minimum
as in the example A = [0, 1[.

Exercise

Eitherf : R — R defined by f(z) = 202+ land A = (=2, 1]. Determine :

1) f(4) , 2 SI}lpf' ou sup f(x) , 3) igf f ou inf f(z).

rEA reA



Correction

1 f(4) =[1,9]
2) sup f = sup f(z) :=sup f(A) =9.
A xeA
We notice that the sup is reached in A for ¥ = —2; we deduce

that Hljlx f=09.

3) 1511ff = xnelgj(:n) = inf(A) = L

Note that the infimum is reached in A for T = 0; we deduce

that mgn =1 : -
Question :what can be said about the extrema of f onR ?

Exercise
If f : R = R defined by f(z) = 1 — 222 and A = [—2, 1]. Determine :

DfA) . Yswpf . Binff.
A ’
Correction

hf(A) =[=7,1]

sup f(x) =1= max f(x).
A

3) il}lf flx)=—-7= mAiLn f(x).

Question :what can be said about the extrema of f on R?

Exercise
If f : R — R defined by f(z) = (x — 1)2 and B = [—1, 1[: Determine :
) f4B) , 2supft , 3)inffl.
B B
Correction

D f(B) =]0,2[. ‘K
I

2) sup f_l = 2;1*111;13( fﬁldoes not exist.
B

3) inf fﬁl = 0;inf fﬁldoes not exist. - 1 E 3
B B 1

Question :what can be said about the extrema of f on R?



2  FLOOR AND CEILING FUNCTIONS

Let x € R and n € Z is the unique integer such that
n<x<n+4l

e The floor function is defined on R with values
in 7, by
floor(x) =n

It is usually denoted lXJ Historically, it has

been (and still) called the integral part or

integer part of x, often denoted [X].

—0C
¢ The ceiling function is defined on R with P o—=e
values in 7, by - [o ——
ceil(z) =n—+1 O_I'—'
It is usually denoted [X]. x‘b
O—=9
—i
Example; What is the floor and ceiling of 2,317?
| 2.31
| e
O 1 2 3 4
t
Floor Ceiling

1 LINEAR AND AFFINE FUNCTIONS

1. The constant function is defined on R by
VeeR : flz)=C, CeR
e It is continuous and indefinitely
differentiable, we have:

fiw) = f'(x) = ... =0
e Its curve is a horizontal line passing
through the point (0.C).




2. The linear function is defined on R by

VeeR : f(x)=azx, a €R,

NB : a map f is said to be linear if (by definition):

flz1+x2) = f(x1) + f(22) And f(az) =a f(x).

e Function * — ax is continuous and indefinitely differentiable, we
have: (az) =a And (ax)" = (ax)" =..=0

e Its curve is a straight line (D) (not vertical) passing through the origin.

o The number G € R is called the leading coefficient. If the
reference is orthonormal, it is called slope.

e Ifa > 0 the function is increasing .

and the line is ascending a< _A

e Ifa < 0 the function is increasing
and the line is descending

Knowing a point A(x,y4) # O is enough to determine the line (D)

— ¥
e analytically [0 = g—j] thatis Y — ﬁ T

e or geometrically [(D) = (OA)].

3. The affine function is defined on R by
VeeR : f(z)=ax+b, a,beR.

e It is continuous and indefinitely differentiable, we have:
(ax +b) =a and (ax+b)" = (ax+0b)" =..=0.

e Its curve is a straight line (D) (not vertical).

e The number a € R is called the leading coefficient,
the number b € R is called the abscissa at the origin.

e Ia > 0 the function is increasing (the line is ascending).
If a < 0 the function is decreasing (the line is descending).




Consider the function: © — f(x) =m(z —a)+ b:
o (s goes through M(a,b).

e In a cartesian coordinate system m = tan 6 where 0
denotes the angle between the line C; and the axis (x'ox).

oy — —
-

For two lines C1 : y=a1x + by and Cs : y = asx + by we have
01//02 < a1 = a» and Cy Ly < aj.ao = —1.

The knowledge of two points A(:EA, yA) + B(fL’B, yB) is enough to

determine the line (D)

— YB7YA YB—YA

o analytically:y — YA = , =~ (513 - $A) orYy —Yp = pe— (iC - $B);

e geometrically [[D) = (AB)].

I —TA Tp—TA
Y—Ya YB—Ya

M(z,y) € (AB) <= AM//AB

Exercise

Find the equation of the lines r and s
shown below and calculate the . 1

coordinates of the point of intersection.

Correction
Graphically we have 7 : (AB) where A(—1,1) and B(2,2), we deduce :

Analytically ¥ —Ya = 22722 (z —24) je. Yy — 1 = % (2 + 1) that is

y=1Ltp4 14
Yy=3r+3.



Geometrically
M(z,y) € (AB) <= AM//AD

T —TA Tp—TA

= =

Y—Ya Yp —Ya

$+1 3*(. Qla, J—
— y—1 1’,L+1 3(y—1)=0

— x—3y+4=0

Graphically we have s : (CD) where A(L, 2) and B(4, 0), we deduce :

Analytically: y — 2 = % (CE — 1) thatis y = —%CC —+ %

Geometrically
M(z,y) € (AB) «— AM//AD

r— Ty Ip —TA

-0
Y—UYAa YB — YA

— Tl 3 s —3y-2) =0
y—2 —2| 7 ST

— 2 —3y+8=0
Intersection ]\J(I, y) if it exists, will be the solution of the system

r—3y+4=0 _ r—3y+4=0 y=16/9

2I+3y_8:0, equlvalently 3:5—4:0 , then I:4/3 .
Exercise

r—ky=1
Let the linear system (S) { Jor — z 1
Geometrically determine the values of & € R such that this system has:
1.) an infinity of solutions; 2.) no solution; 3.) one-stop solution.
Correction
1 1

Geometrically the system (S) is the intersection of the lines C'] : y = El’ — E and

Cy - y:kjﬂj—l,then:

1.) The system has infinitely many solutions if and only if

01202: %ket—l—li.e. k= 1.

k
2.) The system has no solution if and only if
1 1
Cl//CQ: E:ket—E%—l i.e. k=-1.
1
3.) The system has a unique solution. z # k ie. k€ R\ {—1, -|-1}.



1.1.Sign of the 1st degree polynomial

b
T —0G —— 400
)
ar + b sign of (—a) sign of (+a)
2  ABSOLUTE VALUE
The absolute value function is defined on R 4 y =1

by

—x stz <(
+r six >0

VeeR : flx)=|z]:=

e Functionr — |z|is continuous.
It is not differentiable at x=0

e Its curve is a broken line at (0,0).

-3 -2 -1 0 1 2 3

The graph of the absolute value &
function for real numbers

Exercise

Let f: 2 — |z — 3| — |2z + 1| defined on R. Simplify the expression of f() then plot

a curve representative of the functionf.

.Correction
xr —00 —% 3 oo
|z -3 |2 +3 |—2+3 |zr—3
—‘237+1| 204+1 | =20 —1 -2 -1
f(z) r+4 | -3x4+2|—x—4
T+ 4
flx)=<¢ =3z +2
—x — 4
Exercise

¥
T
L
-
LY
-
-
=

Find all solutions in B of the following inequalities :

2) |z +2| <1+ |z—1|

x|z <1

if —oo << —1/2
if —1/2<2<3
if 3 <2< +00




.Correction

D

2)

— o0 0 +oo
$‘$|<1 —rt <1 ie. 2>-1]2°<1 ie. —-l<ax<+l
Solutions ] — 00, 0] [0,1]

We deduce: x|z| <1 <= z €] —o00,1].
T 00 -2 1 +o0
|z + 2| —x—2 T+ 2 42
z — 1] —r+1 —r+1 r—1
—r—-2<l-z+1lpp+2<l—-2+1
nequality ie. —2<2 ie. 2r <0 2<0
Solutions | — 00, —2] [—2,0] No solutions

We deduce : |$+2|<1+|$—1| — 336}—00,0[.




2nd chap. : Numerical sequences

1 DEFINITIONS

Definition (Suites):
A sequence is an application u : N — R,

For n ¢ N, we note u(n) by u,, and we call it nth term, term of order n
or general term of the sequence.

Notice :
In practice, there are essentially two methods for defining a sequence:

1) we define(x,),cn directly as a function of n, for example

1

Vn e N*:u, = 3

whose first terms are u; = 1, uy = 1, u3 = §,us = ...

2) or we define the sequence by recurrence, for examples :
a) the arithmetic sequence of ratio (r € R) and first term %o :
YneN:u, =uy+nr
b) the geometric sequence of ratio (¢ € R) and first term %o:
VneN:u, = uyq"
Example : Size of a sheet of paper

The format of a rectangular sheet of paper is the couple formed u:s A6

by its width and its length. This format varies according to the AS A4

use of the sheet, the period and the geographical area. For | =~ | A2
common uses, especially in office automation, the A4 format is

now very widespread. A3 -

The formatA,is designed so that the
proportions of the sheet are maintained when it is
folded or cut in half along its length, thus avoiding
loss in bookmaking by folding, assembly, A 1
enlargement and reduction by the factor of two .

The numbern in A, indicates the number of times the basic format A, was
divided into two: a division into halves of a leaf A; gives two sheets Aj, whose

division in two gives twice two leaves A, etc...

10



Starting from a paper of formatA,, whose measurements are 21cm x 29.7cm in
the normal direction of writing
1) find the measurements of the formats 4, , n=20,1,..,5.

2) give the size of the format A,, in general.
Correction
Note by l.”_ the width and by L, the length of the formatA,,.

1) To get the format A3 two sheets should be juxtaposed Ay (14 = 21em , Ly = 29.7cm)
(returned widthwise), we get(ly = 29.7cm , Ly = 42cm).

Similarly we get
(I =42em , Ly = 59.4em), (I = 59.4em , Ly = 84.1cm) and (I = 84.1em , Lo = 118.9¢m).

2) Thus by passing from the format A, in the format A,,_jwe will have
lnfl = Ly or Ly = ln
Ly, =2, 2 lTH—l =L,

With (lg = 84.1cm , Ly = 118.9¢m). Note that the format Ag is of area 1 m?.

Definitions (Vocabulary):
A sequence (uy, )nen IS said to be (from a certain rank)

e increasing if it exists N € N such as
n>N — Ungun-l-]-

e Decreasing if it exists N € N such as
n>N = u, > tUpy.

e Monotone whether it is either increasing or decreasing.

e Upper bounded if it exists M € R such as
n>N = u, <M;
we say that M is an upper bound of the sequence.

e Lower bounded if it exists m € R such as
n>N — u, >m;
we says that m is a lower bound of the sequence.
e bounded if it is both upper and lower bounded, i.e. if there is
C € R, such as
n>N = |u,| <C.

Neotice :

1) A sequence (u, )nen is increasing if and only if :
n>N = upy1 —u, > 0.

11



2)If n>N = u, >0, then (uy, ),en is increasing if and only if :
Un+1
uﬂ

n>N —

> 1.

2  CONVERGENCE OF SEQUENCES

2.1.Limits

Intuitive notion of the limit:
Terms u,, of a sequence of real numbers tend to the number (limit) [ € R

if:

e The distance between the terms of the sequence (u,)nen and the

limit [ € R is as close as you want from a certain rank.

e Or : for any neighbourhood of the limit! € R (i.e. an interval of
center | and radius = > () we have all the terms from a certain rank
of the sequence (u, )nen in that neighbourhood.

- Z Zslnm

R | M(E+2my E
. MG .

M(3)

£+ / il \ \
f LR | |

: ¥ o) ||

L!n + + 4+ T + T I— I'., II?- }- F T

f -—=— L S || M{5T|

N n

v" On the left sketch we present a sequence of real numbers u,, which tends towards
[ € R (u, — [) when n tends to infinity (n — +00).
We notice that for all given ¢ > 0, there exists N € N from which we have the
distance between any term t,(n > N) of the sequence and the limit / (|u,, — [|) is less
then ¢ : — < u, —l < +e.
We also notice that for all given £ > (), there exists N € N from which (i.e. forn > N
) we have all the terms u,, of the sequence in the neighbourhood V. of / (that is an

interval cantered at [ with radius <): [—e<u, <l+e.

v On the right sketch we present: /() which tends to the origin (M (t) — O) when ¢
tends to infinity (f — +00).
We notice that for all given ¢ > 0, there exists 7' > () from which we have the
distance between any point A/ (t) (t >> T) of the sequence and the limit O (dist (M(t) — 0))
is less then = : dist (M(t) — O) < e.
12



We also notice that for any neighbourhood V. of the origin (disk cantered at the
origin and of radius ¢ > () it exists T > () from which from which (i.e. fort > T') all
points M (¢)are in the neighbourhood V.of the origin : M(t) € D(O,¢).

Definition (Finite limit):
The sequence (uy )nen has for limit [ € R if:

for every £ > 0, there is a natural number N € N such as
n>N = |u, -] <e.

In other words: the terms of the sequence (u,),cn are as close as one
wants tol from a certain rank.

We also say that the sequence (u, ) ey tends to [ € R. We note

lim wu, =1 or u, — L.
n——+oc n—-+oc
Definition (Infinite limit):

The sequence (u, )nen tends to +oo if: for every A > 0, there is a natural

number N € N such as n>N — u, > A.

The sequence (uy, )nen tends to —c if: for every A > 0, there is a natural

number N € N such as n>N — u, < —A.
We denote
lim w, = +o0 (resp. — 0) or u, — +00 (resp. — 00).
n—+00 n—+00

Definition (Convergence, Divergence):

A sequence (u, )nen is convergent if it admits a finished limit.

It is divergent if not [i.e., either the sequence tends to+ oo, or it does not
admit a limit like ((—1)"), 1.

Netice: Deleting or modifying a finite number of terms does not modify the
nature of the sequence (convergence or divergence).

We can talk about the limit if it exists, because there is uniqueness:

Proposition (Unicity of the limit):
If a function admits a limit, then this limit is unique.
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Property (Operations and Limits):
Let be (,)nen and (y,)nen two sequences such that

Ty —— X and 1y, ——y with —cc < z,y < +00,
n—+00 n—+00
L= 1 1
then agreeing in R =RU {0,400} that g = and — =0 we have :
X

o IntUn —+> T+ 1Y except for the case —oo + oo (which is an indeterminate case).
n—+o0

o Ip Xy m T X Y except for the case () x o~ (which is an indeterminate case).

YAeR: (Az,) — Az.
n—+00

1 1
If 1 £ 0 and =, # 0 from a certain rank then — —— —.
Iy n—+oo I

If y #£0 and y,, # 0 from a certain rank then
Ln

> = except for cases — or — (undetermined cases).
Yp nN—r+oo Y 0 oc

Theorem (Necessary condition)
Any convergent sequence is bounded.

An unbounded sequence cannot be convergent.

To see that, it will be enough to take £ = 1.

; + +
L + ¥ T
+ T4
N
Limits to remember:
+o0 sia>1
1 sta=1
. (aeR), lim a" = )
n—r+o0 0 si—1<a<+1
pas de limite sia < —1.
1
SII — .
) . osinx
. lim L — lim = 1.
n——+0o0 1 r—0 T

mn
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. anx”™ . nln (1+£) ' a In (I;r%) a
e (aeR), lim (14——) = lim e n) = lim e noo=e’
n——+oo n n—+oo n——+oo
e Forla € R)
0 sta<0
lim ¢Yn=1 , lim n“ =<1 sia=0
n—+400 n—+oo
+oo sia>0.
Examples
IRNL 1 1 n? IRRGEL
1) lim (1——) —e ==, 2) lim (1+—) — lim [(H—) ] — oo
n—+oo n e n—+00 n n—-+00 T
1y\n» 1\"*1%
3 lim (1+-5) = lim [(1+5) [" = =1
n—-+oc n n—+00 n
Exercise

Consider a regular n-sided polygon inscribed in a disk of radius r. Show that its
perimeter tends to the length of the circle as n tends to infinity.

Correction

AB =2AH =2rsin (%) so, the perimeter is
p(n) =nAB = 2nrsin (Z).

Then we have

o1
sin (Z) S~
lim p(n)= lim 27r—2% = lim — 9nr.
n—>+oop( ) n—r+00 ;’—: n—r+00 1 :
n
Exercise
Calculate, if they exist, the following limits:
1
: 1 _sme . sinn , ,
1) lim nsin— 2) lim ) 3) lim ) 4) lim n sin(n).
n—+o00 n n—+oc n n—+oco N n—-+4o0

5)“?1 - (1 + i)n, 6)u” - (]' + “7 7)u'n = (1 + i)ﬁe 8)’U,n = (1 + (_’I’]L-) )no

2
7

2n
3\ 1n (3+2)
9Nu, = (1+ E) 10y, = .
Correction
1
_ o1 i S . sinz
1) lim nsin— = lim . — lim = 1.
Nn—+00 n n—+00 l x—=0 @
n
o1
sin —
2) lim = 0.

15



3) =1 _sin(n) _ +1 —1 +1

T T n n—+oc T n—+o0o0 1

IA

i S20Y
n—-+oc n

4) lim nsin(n): Ifn =% + 2krwe have lim nsin(n) = +oc  and if
n—+oo n——+00

n = 37” + 2kmwwe have lim n sin(n) = —oo. Therefore, we have two distinct adherent
n——4oo

points, so lim 7 sin(n) does not exist.

n—+oc
2\n
5) lim wu, = lim (1 + —) t= ek
n—-+oo n—+0o00 n
. T 2 Vinxymo. 2 NG vn B
& Jm v= tim (1422 =t (14 227 = e
2 n 2, n 2.n Ln
) U, = (1 + —)\/_: lim wu, = lim (1 + —) v = |im [(1 + —) } R
n n—+0o0 n—+00 mn n—-+oa n

— 1)\ 1
8) u, = (1 + (=) ) : whether n = 2k we have lim wu, = lim (1 + —)n = ¢ and if
n n

n—-+oo n—-+oo
. . - T — . .
n = 2k + 1 we have lim wu,, = lim (1 + —) =e¢ 1; so lim u,, does not exist.
n——+0oo n—-+oc n n—-+0oo
. . 3 4n, . 3 n 4
9) lim uw,= lim (14+-=) = lim [(1 + =) ] = ()t = e'2
n——+oo n—+00 n n——+00 n

10) u,, =

. 1 2n 2n 1 1 2n .

2.2.Comparison

< —and lim — = lim — = 0, using the frame theorem we deduce

Theorem (Comparisons):

certain rank) Tn <Y, then

lim z, < lim y,.

n—+0o0c n——+00

In particular I f lim z, =400 then lim vy, = +o0.
n—+00 n—+00

Let be two sequences (i, )neny and (y,)nen convergent satisfying (from a

Attention: after passing to the limit, strict inequalities become wide

inequalities:
YvneN:u, >0 = lim u, > 0.
n——+00
1 . o1
Example: V1. € N : u, = — >0 but lim wu, = lim — =0.
n n—-+oQ n—+oo N
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Theorem (frame or gendarmes):
Let (uy,)nen be a sequence. If there are two convergent sequences (T )nen

and (y,)nen SUch that:

1)z, < u, <y, (froma certain rank) 2) lim z,= lim y,=1€eR

T—r+00 x—r+00

then (un)nen converges and we have lim w, =1

n—-+00
Example
~1 s 1 . -
We have— < sin(n) < -1 with lim —1 = lim il =0,
n n mn n—+oo 1 n—+oc N
sin(n)

we deduce applying the theorem that lim = 0.

n—-+0o0 T

Corollary:
If (x)nen is a bounded sequence and (y,)nen converges to y = 0 then the
sequence (x,, X Y, )nen COnverges and we have lim (z, x y,) = 0.
n—r—+o0
Example

If (x,)nen is the sequence given by x, = cos(n) and (y,)ney is defined by

1 cos(n
Yp = —, then lim ()
T n—+00 T

cos(n)

= ( because 0<

|
<= 0.
n

T

Exercise

Answer true or false, justifying your answer.
1. If a sequence (|uy, |)is upper-bounded, then (u,,) is bounded.
2. If a sequence (|u,|) converges to 0, then the sequence (,,) converges to 0.
(
(

3. If a sequence (u,,) converges to [ and if it is in strictly positive terms, then [ > 0.

4. If a sequence (1, ) converges to 0, then the sequence (un X ’Un) converges to 0 whatever is
the sequence (v, ).

5. If{|uy|) and (|v,|) are two convergent sequences, the sequence (|u, + v,|) is also
convergent.

6. If the result (|u, + v,|) is convergent then the two sequences (|u,|) and (|v,|) are also
convergent.

7. If (u,,) and (v,,) are two sequences such that from a certain rank we have wu, < v, then
the convergence of (1, ) implies convergence of ().

8. If a sequence (1, ) is monotone, then it converges.

9. If a sequence (1, ) is monotonic and upper-bounded, then it converges.
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Correction

1. True: if there exists a positive real a such that |u,| < a has then —a < u,, < +a therefore
the sequence (i, ) is bounded.

2. True: —|u,| < u, < |u,|, we obtain the result by applying the gendarme’s theorem.

3. False: u,, = 1/n > 0 for all n but u,, — [ = 0.

4. False: counterexample 1, = 1/n — 0 and v,, = n but u, x v, =14 0.

5. True Because if |u,| — [; and |v,| — [, we have |u,, + v,| < |u,| + |v,] so applying the

comparison theorem we deduce that (|, + v,|) is convergent to a limit [ < l; + l,.

6. False: counterexample, for u,, = n and v,, = —n we have |u,, + v,| = 0 — 0 while both
(Jun|) and (|v,]) diverge.

7. False: for uv,, = —nand v, = 1 / n we have u,, <0 < v,, but (v,) converges while (1, )
diverges.

8. False: u,, = —n is monotonic but divergent.

9. Wrong: If the sequence (1,,) is monotone then two cases arise: (,,) is increasing then it
converges since it is also upper-bounded; () is decreasing then nothing can be said about

its convergence.
Exercise
Calculate, if they exist, the limits of the sequences (un)neNfollowing: ¥n € N*

1 1 1
D u, >1Inn),2) — <wu, < —3)uy < Lu, " u, <1+ —,4)u, =In(n)+sin(n),
n+1 n n

~ msin(n)

. T . i
5) Uy — SlIl(?), 6) Uy = 21 . 7) Uy = Sln(ﬂ- + E)

Correction

1) lim w, > lim In(n) =4ooso lim wu, = 4oc.

n—+oo n—r+00 n—+00

1 1
2). <u, <—and lim = lim — =0, from the frames theorem we deduce
n+1 n n—+too N+ 1  notoon
lim w, =0.
n—r—+00
N 1 . . .
Du, JandVne N* ru, <1+ — <2 being an increasing and upper-bounded
n

sequence, it converges.

) 1
Moreover, we have lim wu, < lim 1+ — =1.

n—-+o0a n—-+oc mn
4).In(n) — 1 <u, =In(n) +sin(n) <In(n)+ 1 and lir+n In(n) — 1= liI+n In(n) + 1 = 400,
n—+00 n—+oc
we deduce lim w, = +o0.
n—+o00

nmw
5) lim sin(—): If » = 3k we have lim SiIl(E) = lim sin(k7) =0 — 0 and if
n—-+oc 3 n—+oc 3 n—+o00
nmw T
n = 6kw + 1lwe obtain lim Sin(?) = HIJP sin(2km + §) = \/g/Q #» 0. We have two
n—+0o0

n—-+oo

subsequences with two distinct limits, therefore lim sin(——) does not exist.
n—+00
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—-n nsin(n) +n £n +1

. <y = d i = lim — =0 ded lim w, =0.
6) nt+1-— tn n?+1 ~n¥4+1 an nﬁl‘Too n?+1 nﬁl‘inco n »wede ucen—>+oo "
T
7y lim w, = lim sin(w + —) = sin(w) = 0.
)n—>+oo n n—+o0o ( + n) ( )

Definition (equivalent sequences, negligible sequence with respect to ...)

e Two sequences (a'n.)nEN and (bn)n.EN (non-zero from a certain rank) are said to be
equivalent (near infinity) tf lim — = 1. Wenote a, ~ bn
n—-+0o0o O
a’n

. (a-n)ngN is said to be negligible compared to (bn)ﬂEN if hgl b_ = 0.
n—+o0 0,

We denote a,, = O(bn).

2.2.1. Comparisons to remember
1) If P(x) = ap + a1z + asx? + ... + a,2™ a polynomial function, then

P(x) o a,x"

ag + a1xr + ast?® + ...+ apa”

2)If F'(z) = an. b, # 0) a rational function, then
) (z) bo + b1z + box? + ... + bya? (an, by # 0)
a xﬂ
F(z) ~ .
3) Trigonometric functions:
. 22
SInx ~ T, tanx ~ x , 1 —cosz ~ —.
0 0 0 2
4) Logarithm, exponential, power functions
In(l1+z)~axe”—1 ~ r(l+x)" -1 ~a,
0
5) For(k > 0) ("exponential base cste << factorial << exponential base var.")
k" , | .ol ,
lim — =0 ie kK" =o(n!) , lim —=0 ie nl = on").
n—+o0c +00 n—-+oo 1 +oo
6) For(k > 0) , a > 0 ("logarithm << power << exponential")
~ (Inn)? , . _ .oon , , ‘
lim ( ) =0 ie (Inn)’ = on®) , lm —=0 ie. n® = o(k").
n—+oo N +00 n—+oo kM +00
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Examples

1 — cos —

1 1—cosx 1
1) lim »° (1 — COb—) = lim ——2 = lim —— = —.
n—+oc n n—-+00 i x—0 ;L‘Q 2
n?
. 1 ) In(1+4+1< - In(1+=x
2) im n In (l—l-—) = lim ( ; "’) = lim ( ) = 1.
n—r+00 n n—+00 Py =0 T
Exercise
Calculate, if they exist, the limits of the sequences (un)neN:Vn e N
. n 1 n n?
].) Up = \/ﬁ, 2) Uy = ; B E, 3) Uy = 1 111(’”), 4) Uy = H’
(2n)! n? n? n+(—1)"
Du, = —=—, 6) Uy = —/——, 7 u, = (—1 Hu, = ———~—,
Yiin n! ) tn n2+1 )t = (1) n2+1 ) 3n—(=1)"
2
n°+1
N U, = —F——10) u, =vViIn+1—v2n+1.
) n 2’]’1\/’5 _I_ 1 ) n \/ \/
Correction
Du, = /n = nt =e m" — € = 1 because ln(n) = o(n).
+00
n
2) lim w,= lim —+ lim — = +o0.
n—++00 n—+oc ¢ n—too
lim w, = lim In(n) = +00 because —— — 1.
n——+o00 n—+oo + 1 n—+1
a n no_ a _
4) we have " oo O(k ) and k oo O(?’L') so I oo O(TL!)’ we deduce
n2
lim u, = lim — =0
N—++00 n—+oo n!
2n)! 2n)(2n — 1)..(n + 1)n!
5)u, = (n') = (2n)( nz ( ) =(2n)2n—-1)..(n+1) = 400
2 2
n n .
Oyun = Ty ™z = Lthen L =1.
2
n 2k)?
DUy, = (—l)nn2 n T if n = 2k we have REIEm Uy = n.EIEm (QgﬁT)-l- =+land if n = 2k + 1
2k +1)? .
we have lim u, = lim —g = —1. Therefore lim 1, does not exist.
n—+oc n—+0o (2]{ + 1)2 +1 n—+00
) n+(—=1)" n n
8) lim u, = lim #: lim — = —.
n—+o0 n—+oo In — (—1)” n—+4oc 3N 3n
9 n 41 Ve deduce i lim Y- = 4
Uy = ~ = — m u,= llm — =
)U.'n 2TI\/E + 1 271\/’5 2 » we deduce n—+o0o In n—+oo 2 o0

:m_m:(\/3”+1—\/2‘H+1)(\/3n.+1+\/2n+1):(3n+1)—(‘2n+1)
Van+1+v2n+1 1+ 41

_ n n B \/ﬁ

7m+m’“@+\/}—n*\/§+\/§—>+m

10)

20



Exercise

Calculate, if they exist, the limits of the sequences (‘un)neN :Vn € N*

yu, = n? [1 oS (i)} 2)u, = n2[1 — €08 (%)],

Du, =n [1 — COS (i)],

)u, = ng[tan (i) — sin (i)}
Correction
2

T
1)we havel — cosz ~ —from where
0

2\ 2
, L 2 N (_) . An?
InEI«Ex, Uy = ﬂll)lllx nz [1 — COS (E)] = -n_El‘Poo ‘nz T; — TIEI}}Q‘_ Tnﬂ = 2.
2
)
a2 () e
2)u, =n [1 cos(\/ﬁ)} n T = 2n, from where
”ETOC Uy, = .”Einm n* [1 — 08 (%)] = nEToc n =400
9\ 2
(2 @) 4n 2 . |
Du, =n [1 — €08 (E)] ~ T 7.?2 = o = = from where REEHOO Uy = REI&OE =0.
4yu, =n’ [(—1)” — €S (%)] whether{ 7", _; we have
i 1 E
o= 2P0 - ()] 1L L
And ifn = 2k + 1 we haveu, = (2k + 1)2{ —1—cos (i)] — —00. lim u,does not
2k n—+00
exist.
. 3 .3 . 3 3 x?
D, = n-‘a[tan (E) — sin (E)] =n? tan (E) [1 — €08 (E)} we havel — cosx v ?And
3 2
tan z ~ zwe deduceu,, ~ n’ 3 (”) = 2—Tfrom where lim u, = el
0 n 2 2 n—+00
Exercise

Calculate, if they exist, the limits of the sequences(un)neNfollowing:Vn e N*

Du, =vVn’+3n—n, 2)u, =n—/n?—3n, 3)u, =n—/n*-3n,

k=n

|
4yu, = )
! ; Vi +k
Correction

Du, =vVn>+3n—n
(Vi*+3n-n) (Vi +3n+n)  n’43n-n* @ : ' _
! Vi +3n+n ni 143 ep 0 » we deduce Tl U= AT e,
' nd ‘
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u, =n—v/n?—3n
(n—vn® = 3n)(n+vn® - 3n ) nf—(m*-3n) -0’ ,
VT o ~ = e deduce lm u; = lim —n
- n+nk

13 n n—++00 n—++00
Du, =n—vn?—3n

3
Uy = 3

= —OO.

(nf\/n273-n)(-n+\/n2f3‘n) n*—(n*-3n) 3n - " b 3L 0
Uy = - = ~N— =3 2 "= 37—
n+vni—3n it Tt% |- _2 ,n_% , we deduce A lfilmul iligﬂ@g n
k=n

4)u, Z F or every I <k < n we have ! < ! < !

! vn.z - \/n?—i—n_ Vil+k T V241

n n
adding term by term we get —_—
vn +n z\/n+k \/n+1
n n n
On the other hand ~ =1 and ~ =1so
vnZ+n  Vn? v 'n-2 +1  Vn2
lim " = lim i =1,

Nn—++00 n2 +n n—++o00 n2 + 1

we deduce from the gendarmes theorem that nl_]}_}_lx Up =1,

2.3. Extracted sequence

2.3.1. Definition and properties

Definition (Extracted sequence or sub-sequence, adhesion value)

Let (uy,)nen be a sequence. We call extracted sequence or sub-sequence
of (un)nen every sequence (vy,),cn defined by

Up = Ugy(n), where ¢ : N — N s a strictly increasing map.

We say that [ € R is an adherent point of the sequence (u,)nen if there
is an extracted subsequence that converges to (.

Example

V' (ugn)nen and (uzn+1)nen are subsequences of the sequence (i, )nen-

V' (Un)nen, (Usnit)uen and (ug,i2).cn are sequences extracted from the
sequence( i, )pen-
v’ Consider the sequence (u,, = (—1)") ven - (U2n = 1)nen is an extracted

sequence with limit 1 and (us, 1 = —1),en IS an extracted sequence
with limit —1.
Therefore, (u, = (=1)"), _, has two adherent points, —1 and +1.
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Exercise

Determine the adherent points of the sequence (un)

in the following cases.

neN*
(—=1)" nm
1D u, = 2) u, = sin (—)
) n 1 + % ) 1 2
Correction
+1 -1 -
1) w9, =  — Land ugy 11 = —— —> — L. hence the set of adherent points is {—1,1}.
2n on
2) ug = 0,u; = 1, ug = 0,u3 = — 1 and the values repeat ... so we can deduce that 4, = 0 — 0,
Uspt1 = 1 — land wgyps3 = —1 — —1, hence the set of adherent pointsis { —1, 0, 1}.
Theorem

Let be (uy,)nen a Sequence.

If lim wu, = [ then any subsequence converges also to the limit I.
n—+00

If a sequence extracted from (u,)nen diverges then (u,)ncn diverges.

If two sequences extracted from (u, ),cn have different limits (two
different adherent points) then (u,, ),cn diverges.

If we can decompose (u,),cn into two (or more) extracted sequences
converging towards the same limit[ € R then ('”*“)-n.eN converges also
to the limit [.

For example, if (ua,)neny and (ug, 11)neny converge to the same limit [,
then (uy,),en converges to l.

[the same frame if we decompose (U, )ner N (Usy ) nen, (Usni1)nen and

('u'ii-rl.JrQ ) H-EN] .

Example
1
v' The sequence (u.n = —)nEN converges to ! =0, so 0 is the unique
n

adherence value of the sequence (uy,)nen.

The sequence (un = (—1)’”)nEN admits two different adherent points :
—1 (limit of (ugy, = 1)pen) and 1 (Ilimit of (uz, = 1)nen), So it diverges.
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(-1)”) +1 .

v' Consider the sequence (un =—) (uzn = —) and (UQ-mH = —)
n ‘" n /neN n /neN

the unique adherent point of (u, =

converge to the same limit [ = 0, then (Un)neNconverges to O which is

(-0

)nEN'

2.3.2. Adjacent sequences

Definition (Adjacent sequences)

The sequences (ay)nen and (b, ),y are said to be adjacent if
1) (ay)nen is increasing, 2) (b,).cn is decreasing 2) lir}g (an, —by) = 0.
n——+00

Theorem (of monotone convergence):

If a sequence (u,),cn IS increasing and upper-bounded then it

converges and lim wu, = supu,.
n——+00 neN

If a sequence (u,),cn IS increasing and not bounded then it diverges
towards +oc.

If a sequence (u,)ncn is decreasing and lower-bounder then it

converges and lim wu, = inf u,,.
n—+00 neN

If a sequence (u,),cn is decreasing and not lowered then it diverges
towards — ~c.

Theorem

If two sequences are adjacent then they converge and have the same
limit.

Indeed, the terms of the sequences are ordered as follows:

augalgagg...gang ...... Sbﬂfébggb]gbo

The sequence (a,).cn is increasing and upper-bounded by by, so it
converges to a limit /.

The sequence (by),cn is decreasing and lower-bounded by ay, so it
converges to a limit /.

Being adjacent, we have 0 = lim (a, — b,) = [ — I’ which means [ = I.

n—-+oo
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1 1
Example: Letbe a, =1——and b, =1+ —5
n n
. . 1 1 1
(an)nen IS increasing because a1 — a, = T + — o= m >0,
1 1 —2n—1
(bﬂ)nEN is decreaSing because bn—I—l — bn = m — E = m < O,
1 1
d li n—by,) = i — — —)=0.
and lim (an—bn) = Hm (=2 —75)

S0 (ay)nen and (b, )nen are adjacent and, applying the theorem, (a,)nen and

(bn)nen converge and we have lim a, = lim b,.
n—+00 n——+o0
Indeed, by a direct calculation, we have lim a, = lim b, = 1.
n—+00 n——+oc
] 1 1
Example: Consider S, Z -—=-4 = + 22 + .. + . We want to show that

(Sn)nen-converges. For thls we introduce the two sequences a,, = 5, and

1
b, = S, + — then we prove that they are adjacent.
n

(ay)new 1S increasing because

ne1 1 no 1 1
(py1 — Ap = n-+1_Sn:Zki-lk._zk—lk:(k+1)2>0'

(Bn ) nen js decreasing because

1 1 1 1 1 1 -1
bn _bn = Sn 7_81?_* = - —— = < 0;
+ +1+?'1+1 n JrnJrl (k+1)2+n+1 n n(n+ 1)
1
and lim (a, —b,) = lim — =0.
n——+00 n——+0o0 1

S0 (ay )nen and (b, )nen are adjacent and, by the theorem, the two sequences
converge. Especially (a,)neny = (Sn)neN converges i.e.

: . 1 1
nEIfoo Sp = 'r11—1>1—i]330 ; 12 Z TR + 5 1 v + ... <oc.
+oc
We say that the serie (infinite sum) Z 2 converges.
k=1

Exercise: (Arithmetic-harmonic mean)

Let (CLH)W,EN and (bn)ﬂEN be two sequences such that ag > by > 0 and ¥n € N

+b
an > 1] and -

Upy1 =

1. Check that the sequence (fln. X bn)'n,EN is stationary.

2. Assuming it exists, calculate the limits to the two sequences.
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3. Show that the sequences (a‘n)n-EN and (bn)nEN are adjacent. Are they convergent.

Correction

ty, + by, y 2 apby,
2 a, + by,

1L.YneN 1 apeq X byyy = =a, X b, = ... = ay X by so the sequence (a, X by )nen is

stationary.

2.If lim (a,) = aand lim (b,) = b (assuming they converge) then

n——4oo n—+4oo

ap + b a+b
Opy1 = ”’2 L — = -21_ = a—b=0.

On the other hand, a, xb,=ayxby = ab=ay by we deduce a=>b=+/aq by.

3. We want to show that the two sequences (a'n.)nEN and (bn)n.EN converge. FFor this we will
prove that they are adjacent

a, + b, b, — a, ) .

ps1 — Ay = % —a, = — 5 ® <0 so, the sequence (a‘n)nEN is decreasing.
2 ayb a, — by) b

bpir — b, = Ty, = M > 0, we deduce that the sequence (bn)nEN is
ay, + by, 2

increasing.

According to the previous question obviously lim (a, —b,) = 0.
n—r+oo

So (a'n.)nEN and (bn)nEN are then adjacent and consequently they both converge to the
common limit +/aq bg.

Netice : For a,b > 0 we have different averages

a® + b a+b 2 2ab
= A = G = vV b H = — .
< 2 2 “ Lyd a+b
The harmonic mean is denoted by H , the arithmetic ,f"f_______h"ﬂxh
mean is A and the geometric meanis G .
Q denotes a fourth mean, the quadratic mean.
A 'H
Since a hypotenuse is always longer than a leg of a ;’“ / G '\~u
right triangle, the diagram shows that Ja’f x«\
| .
Q>A>G>H. |I / I|
. . —

Exercise (Arithmetic mean geometric)
Let (a'n)nEN and (bn)nEN be two sequences such as ag > by > 0 and Vn € N
a?’l + bn

ntl = ——5— and  bpi1 = Vapby

Show that the two sequences (an)nEN and (bn)nEN converge to the same limit.
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3  EXAMPLES OF REMARKABLE SUITES

3.1.Approximation of reals by decimals

Proposition
_ E(10" a) . . o
a € R, posing Uy = R uy, IS a decimal approximation of a
within 10~", in particular lim wu, = a.
n—+o0

Indeed: according to the definition of the integer part, we have

E(10"a) < 10"a < E(10"a) + 1,

. 1 n
SO U, < a < Uy, 1.e. 0<a—u,< (E) — 0.

+ W n——+oc
Notice:

1. The terms ,, are decimal numbers, in particular they are rational
numbers.

2. So we have for every a € R, there is a sequence of rational numbers
(un)neny Which converges to a. We say that the rational set () is_dense_in the
set of real numbers R.

3.2.Linear recurrent sequence of order 1

Definition (Arithmetic sequence)
A sequence (uy, )nen IS said to be arithmetic of ratio (r € R) and first

term uyg if

VneN:uy, 1 =uy,+r.

We notice that YneN:u, =uy+nr.

EXAMPLE
1)Constant sequences are arithmetic sequences with ratio » = 0.
2) The set N constitutes the set-image (range) of an arithmetic sequence of

first term uy = 0 and reason r = 1.

Exercise
The sale price of a car initially marketed in 1995 decreases every year by the same

value. In 2002, it was displayed at a price of €13,200. In 2006, we note a sale price of
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€11,600. We note (1, )per the selling price of this model in the year (1995+n) and we
consider the sequence (un)nEN.

1. Give the nature of (un)nEN~

2. What was the initial sale price in 19957

3. From what year will it be possible to acquire the car for less than €10,0007?

4. From the beginning of 1999 to the end of 2010, a dealer buys ten of these models every
year. Determine the total amount spent to purchase all of these vehicles.

Correction

1) The selling price decreases every year by the same value then the sequence (t,, )nen is

arithmetic
Upt+1 = Up + T =Ug+NT.

We have u; = ug + 7r = 13200 and u;; = ug + 11r = 11600 from where
Ur — U1 = —4r = 1600,

we deduce the ratio from the sequence is ¥ = —400.
2) The initial sale price is ug = uy — 7r = 13200 — 7(—400) = 16000.

6000
Iy = up +nr < 10000 < 16000 — 400n < 10000 < n > 00 = 15;

so it is from the year 2010 that it will be possible to acquire the car for less than 10000€.

4) The total amount spent from 1999 to the end of 2010 is
Uy + Uy 112 X ug+4r +156r 122 x 16000 — 19 x 400

— Uyt gy = 12 - — 146400
S Ugt...FUy 9 9 9
Definition (Geometric sequence)
A sequence (uy, )nen 1S said to be geometric of ratio (¢ € R) and first term
uq if
Vn € N: iy, = q X uy,.
We notice that Vn e N:u, =uyq".
Example

1) Constant sequences are geometric sequences with ratio ¢ = 1.
2) Let (uy)nen be the geometric sequence defined by: 4y = 1 and ratio ¢ = 2,

then VneN:u,=2" ie (u)pen=(1,2,4,8,16, 32, ...

Exercise
A microbial population sees its number increase by about 10% every hour. Knowing that

it has 200 individuals when we observe it, what will happen after 24 hours?
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Correction

Note U, the number of individuals after n hours. The population increases by 10% every
hour so

Upt1 = Up + 0, X 0.1 =0, (14+0.1) = v (14 0.1)",
where vy = 200 is the initial population. The sequence (Vy, ) cry is geometric with ratio
g=1,1L
After 24 hours, there will be approximately vo4 = 200 x (1,1)%* = 1970 people.
Exercise

Determine the nature of the following sequence and study its convergence:

()
Uy = )
" 1+ a?

Correction

1 —a?

It is a geometric sequence with common ratio ¢(a) = (—2) We study and represent the
a

function a — ¢(a)

So (u,) converge <= —1 < q(a) < +1, we deduce from the curve that

(u,) converge Ya € R* and in this case lim,, , o %, = limy, o (q(a))n = 0.

For a = 0 we will haveg(0) = 1 and then u,, = 1 , Vn € N, we’ll have lim,,—, o %, = 1.
Exercise

A unit square is divided into 9 identical squares, the central square being coloured (Step
7). Each of the remaining eight squares is divided according to the same principle, and we

repeat this process ad infinitum. What will be the area of the coloured surface?

Correction

Note $,, the area of the colored surface in step 7., 7 € N*; we have 51 = % To calculate

the area Sy, of the colored domain at the step 7 + 1, just add to s,, one-ninth of the area

of the remaining surface namely 1 — s,,. We then obtain the following relationship:

l1—s, 8 +1
:—Sn —.
9 9 9

It is an arithmetic-geometric sequence; therefore, at limit, the area of the coloured domain is

Sp+1 = Sp +

equal to lim s,=1.
n—+00
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8
{ is the solution of the equation [ = § [+ § which yields to [ =1.

3.3.Linear recurrent sequence of order 2

Definition (Linear recurrent sequence of order 2)
A linear recurrent sequence of order 2 is given by

uy=A, u =8B ; Upt2 = A Ups1 +bu, — — — (Eq)

where A, B, a and b fixed real numbers.

Let us look for sequences of the geometric type satisfying this
system. The general term of this sequence can be of form u, = r" with

P2 — gt e ie. P —ar—b=0.

If A = a? + 4b > 0, then there are two distinct real roots:

a—va?+4b a+va?+4b
2 b

ry = 5 and 77—

thus, any solution of (Fq) is of the form
u, = ary + Bry.

Now we just have to find the coefficients o and 3. Considering the
"initial" conditions ug = A , u; = B we have to solve the system

a+p=A
ar;+ Bro =B .

Exercise: (Sconmuation oFFIBoNACCH)

The sequence of Fisonaccr is a sequence of integers such that each term is the sum of the two
precedent terms. It usually starts with the terms 0 and 1 (sometimes 1 and 1).

It gets its name from Leonardo FisonNacci, an Italian mathematician from xiir. century
who described the growth of a rabbit colony:

“A man puts a couple of rabbits in an isolated place. How many couples do we get in a year
if each couple generates a new couple every month from the third month of its existence?”
In this (ideal) population, we assume that:

1)at (beginning of) the first month, there is just one pair of young rabbits;

2)the rabbits do not procreate until (beginning of) the third month;

3) each (beginning of) month, any pair likely to procreate effectively generates a new pair of
young rabbits;

4) there is no mortality (hence the FIBONACCI sequence is strictly increasing).
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Lorrection
Note F}, the number of pairs of rabbits at the beginning of month n. We have by hypothesis
Fy=F,=1and 5 = 3.
In the month n + 2 we will have I}, | 9 pairs ; it results by adding [}, | 1 couples of the month
1 -+ 1 and the newborns that correspond to rabbits aged at least two months, that is F,
couples.
We deduce from this analysis
Fn+2 = E2.+1 + .

We put Fp = 0, we thus obtain the recurrent form of the FIBONACCI sequence: each term
of this sequence is the sum of the two previous terms:

Fo=0, Fi=1 ; Foyo=Fop + F, — — — (Eq).
Looking for solutions in the form U, = ", the polynomial characteristic is Per—1= 0,
A = 5 and roots will be
1-V5 1+V5

” r—
2 2
Thus, any solution of (F/q)is of the form (called BINET formula):

r = — Ty

F, =ar] +p(1 —r)".

Considering the "initial" conditions we get the system

a+ =0 1
{ozrlJr[j’(l—Tl):l. = ﬁ_T

(tr;1 — (1 — T’l)n).

]

hence the number of couples in the ntme year F =

S| -
ot

3.4.Recursive sequence defined by a function

Let f : R — R be a function. A recurring sequence is defined by its first
term and a relation allowing to calculate the terms step by step (successively):
u € R et wup = f(u,) pour n> 0.

A given recurrent sequence is not necessarily convergent. When the limit
exists, the set of possible values is restricted by the following result.

Proposition:
If the recurring sequence (u,,), converges to [ € R and if the function f

is a continuous, then [ is a solution of the equation: f(x) = x.

So, if the limit exists, this proposition affirms that it is to be found among
the solutions of the equation f(l) =1 (fixed point of the function f).
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Definition (Fixed point):
A valuel € R, checking f(l) = [ is called fixed point of the function f.

We are going to study in detail two particular cases: increasing and
decreasing functions.

3.4.1. Case of an increasing function

For an increasing function, the behaviour of the sequence (u,), defined by

recurrence u, 1 = f(u,) is quite simple:
Casel: uy = Uy = Uy = f(ul) > up = f(uo) — ... — (un)n increasing sequence.
(ase2 U1 <ug = up = f(u) Sup = fug) = ... = (un)n decreasing sequence.

Here is the main result:

Proposition

If f:]a,b] — [a,b] is a continuous and increasing function, then

Yuy € [a, b, the recurring sequence defined by w, 1 = f(u,) is
monotonic and converges to | € [a,b] checking the equation f (1) = .

¥

Netice : There is an important assumption that is somewhat
hidden: f([a,b])

f([a, b]) C [a,b].

Exercise

Either fthe function defined by /() = §(2* = 1)(z —2) 4z
Study the recurrent sequence defined by u,, € [0, 2] and wu, 1 = f(u,) for n > 0.
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Correction

1.Study of the function f: y 7

(a) fis continuous on R.

(b) f is differentiable on R, f'(x) > 0 on the interval [0,
2] so that f is strictly increasing.

(d) £(0) = 1/2 and £ (2) = 2 then f([0,2]) = [1/2.2] € [0,2]. -

We conclude that the sequence is bounded. “

2. Calculation of fixed points, values that satisfy f(z) = x :

For this let’s solve the equation  f(z) — 2 = (22 — 1)(z — 2) = 0.

Fixed points are—1, +1, 2. The limit of u, is to be found among the values +1, 2.

3. Convergence of the recurrent sequence (Separation of cases):
From the representative curve (' intersect the prime bisector in points of abscissa +1 and
+2. For uy = 1 or uy = 2. the sequence will be constant: u,, = ug Vn > 0.

Otherwise, we have

Case 1:0 < wy < 1; in this case (f (x) > x) U1 = Uq then the sequence.(uﬂ)n is increasing
and upper-bound by 2, therefore it converges to the fixed point | = +1.

Case 2:1 < uy < 2;in this case (f(z) < x) u; < uy then the sequence.(1,, ), is decreasing and
lower-bound by 0, so it converges to the fixed point { = +1.

Notice:

The graph of the function plays a very important role, it must be drawn
even if it is not explicitly requested. It allows you to get a very precise idea
of the behavior of the sequence.

3.4.2. Case of a decreasing function

If the function f is decreasing then f o f is increasing, applying the
previous result to f o f we obtain:

Proposition

If f : [a.b] = [a,b] a continuous function and decreasing, then ¥ u € [a,b],
the sequence defined by Upi1 = fluy) check what follows:

o The sub-sequence (us,), converges to a limit | € [a,b] checking

fofll)=1.
o The sub-sequence (U, 1), converges to a limit I € [a,b] checking
fofll)=1.

e It may (ornot) I =1.
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Exercise

1
Let f be the function defined by f(x) = 1 4+ —. Study the recurrent sequence defined by
X

ug > 0, Upt1 = f(un) for n > 0.

Correction
1. Study of f y

The function f is continuous and strictly decreasing on
10, +o0[. f(]0,4+00]) =]1,+00[C]0, +00[ then
[ o f(]0,+oc[) CJ0, 4.

2 Calculation of fixed points.

Find the x values satisfying fo f(r) ==

1 €T 2r + 1
foflz)=14 ——— =1+ = . b .
1+; r+1 r+1 R

2r + 1
x+1

<0 so, the only fixed point to consider is =

=rp < 2—r—-1=0 < Ie{l V5 1+2\/5}'

foflz)=

1—

[
B

2r + 1 —ri+z+1
Note that the sign of fo f(z)—z = 1 T = Tl-i_ informs us that:

(*) S = fo f( ) > and (*%)

1+
v > 0 o fl) <
3. Convergence of the recurrent sequence (Separation of cases):

+\f

Case: 1() < uy <

1) From (*) 0<uy< H? = uy = fo f(ug) > uy, fo fbeingincreasing, then the sequence

(U.gn)n 18 1ncrea81ng.
2) From (**) wu > 1+T\/§ = ug=fof(u)<wu fofbeingincreasing, then the sequence
(u2n+1)n is decreasing.

1 1 1+
3) [ is creasing then 0<uy < V5 = fug) > f( +2\/5) = +2\£ > uy; we deduce
that
U < U9 < U4 < ... < Up < ... < Uon+1 <..< Us < Us < Ui.
We conclude:

1) the sequence (Usy, )y, is increasing and upper-bounded by i1, so it converges to the unique

1+v/5
5

fixed point | =

2) the sequence (U2n+1)n is decreasing and lower-bounded by ), so it converges to the

=4
unique fixed point | = 1+—2‘/3

. 1+
So, the sequence (un)ﬂ converges to | = 5
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1+ﬁ)_1+\@

= ulzf(u.g)gf( 5 ;

Case 2: we have Uy > < ;s

145
2

we deduce that:

1) From (*) uy> 1+2\@ = Uy = foflu) <up, fo [ beingincreasing, then the sequence

('UQn)n is decreasing.

2) From (**) ;< HT‘B = u3 = fof(u)>u, fofbeingincreasing, then the sequence

(U271+1)n is increasing.

1++5 1+\/3)1+\/5<u.
2 - = U0

ﬁulzf(ug)gf( 5 5

3) fis creasing then Uy >

we deduce that

U1 S Us S Ux S S Uon+1 S ...... S U9y, S S U4 S U9 S Uq.
We conclude:
1) the sequence (’iLQ-n_).n is decreasing and lower-bounded by 11, so it converges to the unique
|4
fixed point | = 1+2\/3.

2) the sequence (U2n+1)n is increasing and upper-bounded by i, so it converges to the

+v5

unique fixed point | = L 5

We deduce that the sequence ('Ufn.)n converges to | = 1+2‘/3.
Exercise
Study the sequence defined by g , u,,1 = f(u,) n € N for the following cases:
1
1)y > 1,f(:17):2—5, 2)1 <wup < 2,f(x)=v2+z, Duy>2 flz) =2 +1,
U, u% + Uy

4)ug > 0,Upq1 = )0 <uy <Lty = .

L+u?’ 2

Correction

1
Dug > Ltge = f(u,) =2— —.2 — f(z)is increasing.
u

m

a) Let us show that u,, > 1, Vn € N: we haveu, > 1, suppose u, > 1 then
1

Ups1 22— 1= L;
hence by the recurrence principle we get: Vn € N : wu, > 1.

b) Let us study the variation of (u,) :

1 U, — 1 — u._2 —(u, — 1 2
Upy1 — Uy = 2— — —u, = n no_ ( n ) <0
Un Up U,
so (u,) is decreasing.
¢) Let’s show that(u,,) is convergent: (u,,) is decreasing and lower-bounded by 1 so it

converges.
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d) seek the limit: note its limit I, we must have { > 1.
1 1

Seeking for the fixed points: Unt+1 = 2— . = 1=2- 7» 80 I'is solution of equation
- .

P=20+1=0 jis =1 Tt is the limit of (Un),

2)1 < ug < 2,11 = ftn) = V2+ Uy, x — f(z)is increasing.
a) Let us show thatl < u, <2, ¥n € N: we havel < uy < 2, supposel < u,, <2, then
1<V3=V2F1< 1 =2+ u, <V2+2=2,

hence by the principle of recurrence we get VneN : 1<u, <2.

_ 2
24 Uun =, the

BCETERS

denominator is positive, let's study the sign of the numerator: — 2?4+ +2,A=90,12,=2,

b) Let us study the variation of (u,,) : Uptrl — Up = V2 + Uy — Uy

29 = —1,forl <z < 2wehave—1?+ 1z +2 > 0, we deduce that (u,) is increasing.
¢) Show that (u,) is convergent: (u, ) is increasing and upper-bounded by 2, so it converges.

d) seek the limit: denote by the limit, we must have 1 <[ < 2.
Seeking for the fixed points: Upi1 =2+ u, = l=+2+1, |issolution of equation
I?—1—-2=0,A=9,solutions I} =2 and I, = —1. As1 < u, <2 and (u,) is increasing,

we conclude the limit is { = 2.

3)ug > 2, Upyy = flu,) =u2 + 1, x — f(x) is increasing on |2, +ox].
a) Let us show thatwu, > 2, Vn € N : we haveu; > 2, suppose u,, > 2, then
Ups1 :ui—l—1>22+1:5>2,

hence by the recurrence principle Vn € N : w, > 2.
b) Let us study the variation of (u,,) :

Upip — Uy =02+ 1=y > 02 +1—2u, = (u, —1)* >0 on [2,4+x], so (u,) is
increasing.
c) Convergence: (u,,) is increasing and lower-bounded by 2; we cannot conclude anything on
its convergence.
If it converges let us denote by its limit, we must have! > 2 and
Upy) = ui +1 = 1=1+1; lissolution of > — 1+ 1 =0, A = —3. There is no real solution
and therefore (u,,) cannot be convergent.

As (uy) is positive strictly increasing then it diverges towards +oc.

Up ., xT

4)ug > 0,Upy = ﬂ Consider the function z — f(z) = 52 We have

f'(x) = 1 +2) 7‘:&(1) = 1 ~ >0, so the function is increasing.

' (14 x)? (1+x)?
a) Let us show that w,, >0, Yn € N: we haveg > 0, suppose u,, > (, then
Uny1 = f(u,) > f(0) =0,
hence by the recurrence principle Vn e N : w, > 0.

3
.. Uy, —up N

b) Let us study the variation of (u,): Uy — Uy = Tra U =T " <0, () is
decreasing.

36



c¢) Convergence: (u,,) is decreasing and lower-bounded by 0, so it converges. Note [ its limit,

[ .
we must have { > (Jand [ = ——35 80 [ is solution of equation {* = () that is [ = 0.

L+1

2 2
U, + U . . T+
" " Consider the function v — f(x) = ; we have

)0 <uy <Lty = 5

1
fllx)=o+ 3 > () so the function is increasing on |0, 1.

a) Let us show that 0 < u, <1, Vn € N: we have 0 <uy <1,  supposel <u, <1, then
0= f(0) < tps1 = f(u,) < f(1) =1, hence by the recurrence principle
VneN @ 0<u, <1
b) Let us study the variation of (u,, ):
U2+ up U=y Uy (U — 1)

Upy)] — Uy = ——— — Uy = = <0
2 2 2

so (uy,) is decreasing.
c) Convergence: (u,,) is decreasing and lower-bounded by 0, so it converges.
I +1

Note byi its limit, we must have 0 <[ < land [ = , so [ is solution of equation

[?—1=0,thatisl =0VI=1.As 0 < u, < 1and (u,) is decreasing, we deduce that [ = (.
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3rd chap. : Generalities on Functions

1 GENERALITIES

1.1. Definition, graph, equality, restriction, intersections

Definition :
A function f : Dy C R = R,is a "process" which at each real x € D;
(input) associates (at most) one real number y € R (image) noted f(r).

We notice: [+ ECDy—R
r—y=f(r).
The domain Dy is the greatest set of real numbers x for which f(x)
exists.
Notice

You can define a function in different ways:

1) using an expression such as:f(z) = % with D; =R\ {—1};
xr

o sir <
x SII_OWithDQZR;

2) using several expressions:g(x) = { _ _
sSin.axy  Ssinon

3) using certain curves, for example an electrocardiogram.

Notice

1) Attention: do not confuse the function f and the real f(x).

2) The variable x is mute; we can very well write ¢t — f({) Or B — f(H).

Exercise
1
Let be the function defined by f(T) = p—
Give  f(4), f(3), 4f(z), f(dz), f(x +4), fF(4) + f(2), f(—z), —f(z).
Correction . .
f(4) = ﬁ — 1, f(3) doesn’t exist, 4f(x) = — fldx) = P
1 1 —
flz+4)= ($+4)_3= T f(4)+f(r)—ﬁ+mi3 —1+mi3—i_§,
1 -1 _
f(_vl) - —r—3 - T+ 3’ _I(T) - T 13
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Exercise

A hot air balloon rises vertically from the ground at a speed of 1 m/s.

Express, as a function of height, the distance between the balloon and an observer
initially located 200 m away (see drawing below).

Correction

We apply the Pythagorean theorem:

B = h* 4+ 200> = (0.4)2 4+ 200 then d(t) = /12 + 2002

Exercise
We want to build a steel tank for propane gas in the shape of a cylinder of 10 m long with

a hemisphere at each end (see picture).

Express the volume of the tank (in m?3) as a function of the radius r (in m).

Correction
V(total) = V(half-ball) + V(cylinder) + V(half-ball) = V(ball) + V(cylinder).

4 4
V(total) = §7r7"3 + 7r*h = ?W 3+ 10 rs

Exercise

The keeper of a lighthouse (point A) must join his
house (point B). He travels by canoe at a speed of 4
km/h and on foot at a speed of 5 km/h. The coast is
assumed to be straight. It will dock at point P such
thatPEB = x. If t is the total time to reach home,

express tin terms of .

Correction
At constant speed v the distance traveled in one time ¢ East t = v{. x = PB So,
using Pythagoras theorem
AP = /9% + (15 — x).
To go from A to P the goalkeeper will put
AP  PB 9+ (15-2)2 2 2?-30x+306
t= + = - = —.
v v 4 5} 4 5

Notice

Usually, the domain D; of a function is not given, it needs to be specified.
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Exercise

Decide if the relationships below are functions of x. If yes, find the definition domain D

1 1

Hhy=(x+2)? 2Jy=-—="35 3)y= 4y = £3z
)y = (z+2) )Y CETIE VW= )Y
S)Y = )y’ =2 Ty=-"— 8 y=+2—ux.
)Y ORGP )y Jy=" )Y
Correction
1

y=(xr+2)° D=R y=7—"—">o3 D=R\{-2
yu=(a+2) 1= g \(-2)

1
Ny =— 5 D=R 4) y = 32 is not a function because every = # (

x

admits two images.

1 1
) = - D=R\{-1)
S Vi tatl Jarlp
6) y> = 2?2 <= y = %2 is not a function because every = # 0 admits two images.
7)3'/:m D =R* 8y =+v2—=x D =] — 0, 2|.

T

Definition (Graph of a function):
The graph of f : Df CR =R istheset'y = {(z,f(z)) e RxR, z € Dy}.

Usually, we represent I'; by a representative curve noted C'¢

We can represent the functions by two types of illustrations:
f ¥

(ST —

flx)

) ;ﬂ,ﬁmwnﬂ

Definition (Equality of two functions):
f,g : E— F are said to be equal if and only if Ve € E : f(x) = g(x).

We denote: [ = g.
Definition (Restriction of a function):
Let be a function f : Dy CR — R and A C D;.The function f is well
defined on A and we call restriction of f to A, the function denoted f|4
and defined by
fla : AcD; =R
=y = flalx) = f(z).
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J"ll-". }'-.

/-\\FfA
N\ |
N

X \\:/ .1 1 X
Example
—x six < _
Forg(x) = { T ST 0vehave  gligseol(z) = sinz and glj_eeo(z) = —a.
S1n.xr  S1noIil
Notice

v When there is no possible confusion, it happens that we use the
notationf to designatef|,. For example, cos : [0,27] — R.
v' We can also restrict the destination set to a subset of R.

¥
Recall that the "graph" (representative curve) of
f R = Ris made up of points on the plane whose —
coordinates are (z, f(z)) , * € R. Jlx)
X

Intersections:

Consider f,g : R — R. The intersection of curves C; , C,.is given by

Cf ﬂCg = {(J’f(x)) : f(CC) = g(il?), S Df M DQ}

Especially for the intersection with axes we have:
e CrNn(2'ox)={(z, f(z) : f(x)=0, x € Ds} which is the set solution of
the equation f(x) =0;

e Whether 0¢€ D; we have Ct N (yoy) ={(0, £(0)}.

Exercise
Chat graphically according to the value of the parameter m € IR the number and sign of

the solutions of the equationf(z) = 0 for:
1) flz)=2*—x2—m , 2) f(x) = cos(bx) —m.
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Correction
1) The solutions of the equation f(2) = 0 are the abscissas

of points of intersection of the curve of g : & — 23— and
the horizontal line with equation y = m.
By varying m €] — 00, +00| and by observing the quoted

intersections we obtain:

a) If m €] — 0o, —2] then the equation f(x) = () admits a negative solution.
b) If 1 = —2 then the equation f(2) = 0 admits a negative solution and a positive
solution.

¢) If m €] — 2, 0] then the equation f(x) = () has one negative solution and two positive

solutions.

d) If m €]0, +2[ then the equation f(x) = () admits two negative solutions and one

positive solution.

e) If m = +2 then the equation f(z) = 0 admits a negative solution and a positive

solution.

f) If m 6]2, JrOO[ then the equation j(:r) = () admits a positive solution.

2) The solutions of the equation f () = 0 are the abscissas of the points of intersection of
the curve of g : & — c0s(5x) and the horizontal line with equation iy = m :

NANA

a) If [m| < li.e.,m € [—1, —1] then the equation f(x) = () admits an infinity of solutions

b) Otherwise, the equation f(x) = 0 does not admit solutions.

1.2.Injection, surjection, bijection

Definition and characterization of an injective function:
1) [f: F— Fisinjective] <= z #1 = f(x) # f(2)
— flx)=f(a') = z=2.

2) [ : E — F is an injection if and only if Vy € F' the equation y = f(x)
admits at most one solution x ¢ E.
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Below we represent non-injective functions:

f
' ¥
E = F

Definition and characterization of a surjective function:
1) [f: F— F issurjective] <= Vy € Filexviste x € E : y= f(x)

admits at least one solution x € FE.

2) f: E — F is a surjection if and only if Vy € I the equation y = f(z)

f
y
We represent surjective and -
non-injective functions E - F ’/
N a :

Graphic representation of

-

'H

injectives and non- -
j . . ) E F ) /
surjectives functions. .

Exercise
Let E and F be two sets. For every relation * R y with € I/ and y € F’ determine
which are functions, then the domain of definition of each of these functions. Determine

which are maps and whether they are injective and/or surjective.

Ins|

Correction
1 It is not a function. 4 | It is a non-injective surjective map.
9 It is a function but it is not an 5 | Itis an injective non-surjective
application. map.
3 It is neither injective nor 6 | Itis an injective and surjective
surjective. map.
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Exercise

Let E and F be two subsets of R and a function f : £ — F.
the graph of which is drawn opposite. For each choice of F
and [ determine if the function is an application and if it is
injective and/or surjective:

1. F:=Rand F =R, 2. F:=[-1,4+o0[and F := R,
3. E:=|-1,+00[ and F := [0, 00|, 4. F :=[-1,0] and
F = [0, +00] 5.F :=[-1,0] and F := [0;1].

Correction

1. £:=Rand F:=R,:
a) it is a function because any straight line with

equation I = k. k € E:=Rintersects the graph offat most

once, 2

b) it is not an application because the line with equation |

T = —J never intersects the graph of f.

]

2. E:=[-1,+oo[and F' := R,

a) it is an application because any line with equation

v =k, k€ E:=[-1+intersects the graph of f exactly once,
b) it is not injective because the line with equation y = é
intersects the graph of f more than once,

c) it is not surjective because the line with equation y = —1

never intersects the graph of the function f.

3. E:=[—1,+00][and F := [0, +o0],

a) it is an application because any line with equation

v =k, k€L :=[-1+x[intersects the graph of f exactly once,
b) it is not injective because the line with equation y = %
intersects the graph of f more than once,

c) it is surjective because any line with equation

y=k, k€E =0+ intersects the graph of f at least once.
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4. [ :=[—1,0] and I := [0, +00| ¥F
a) it is an application because any line with equation
r=k, k€ E:=[-10] intersects the graph of f exactly once,
b) it is injective because the line with equation

y=k, kelF:=[0,+0] intersects the graph of f at most once,

c) it is not surjective because the line with equation y = 2

never intersects the graph of f.

5. £ :=[—1,0]and F := [0, 1] e
a) it is an application because any line with equation
r=Fk, k€ E:=[-10] intersects the graph of f exactly once,
b) it is bijective (injective and surjective) because any

straight line with equation y =k, k€ F:= 0,1] intersects the

graph of f exactly once. A

Definition and characterization of a bijective function:

1) f: E — F is said to be bijective if it is an injective and surjective
application.

2) f: E— Fis a bijection if and only if Vy € I the equationy = f(x)
admits a unique solution x € E.

Below we represent bijective functions:

f ¥
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Exercise
Let be the function f : ¥ — [ defined by
flx)=a*+2.
1. suppose that &' = F' = R.
a) Show that f is a map.
b) Show that f is not injective.

c) Show that fis not surjective.

2. suppose that £ :=] — 00,0] and F' := [2, 400|.

i) Show that f is a one-to-one map.

i) Find ft reciprocal application of f. e e

Attention: we can draw inspiration from the graph of | and by considering the intersections of

this graph with horizontal lines, but this does not constitute a proof!

Correction

l.suppose that £ = F' = R. The curve U of f is represented above:

a) f(z) =2*+2, Dy =R = E : the function fis an application.

b) f is injective if 11 # 19 = f(x1) # [(x2); but f(—1) = f(+1) = 3 so [ is not injective.
vs). fis surjective if Vy € F' = R the equation y = f(2) , * € E = R admits a solution (at

least); but for y = 0 the equation 0 = 22 + 2 does not admit a solution, so fis not surjective.

2. suppose that F' =] — 00,0] and F' = [2, 0.
i) The restriction of fto these new sets makes it injective and surjective. Indeed, consider for
y € F =[2 400 the equationyy — f(:lj) =22 +2 , r ek :] — 00, U]:

Yy = 42— 2?

— |z|=+y—2 [onayEQ}

= x=\/y—2 [Ol’lasz}

For everything ¥ € I the equation y = f(x) admits a unique solution € [7, SO fis
bijective.
ii) Reciprocal application f~! : F' = [2,+00[— E =] — 00, 0] is defined by

fHz)=+vr-2.

Exercise
2x
L R — Rbeafi ion defined by f(z) = .
et [ e a function defined by f(x) 2
1. Is f injective? surjective? 2. Show that f(R) = {—1, 1].

3. Show that the restriction ¢ : {*1, 1} — [*1, 1} with g(r) = f(:L‘) is a bijection.
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Correction

Note that f is an application because )y = R.
2r
2+ 1
the equation of unknown  and parameter ¥ # () admits solutions if and only if the

discriminant reduces A’ = 1 — y? > Owhich s realized for ly| < 1. We deduce that:

1. We have y = = yr’ —20+y=0

has fory = 3 (for example) there will be two solutions and therefore f is not injective.

b) for y = 3 (e.g.) there will be no solutions and so f is not surjective.

2. Consider the equation y = f(z) of unknown x and parameter y :
a) for y 7 () we obtain as solution = = 0; b) for ¥ # 0 it admits solutions for|y| < 1.
We deduce that the range of f is[—1, 1].

3. From the results obtained above applied to the restriction g : [-1,1] = [-1,1], the

1—v/1—y

equation § = ¢() has for all y € [—1,1] \ {0} two solutions z; = ,——and
T 144/ 1—y2
Ty = —""——.
y
1+ /1 -2 1
We have |y| < 150& > 1, then 25| = ||J > ﬁ > 1.
y Yy
We deduce that so only the solution z; = Vit ”,Jliyzis admissible and consequently, the
1—1—z2

restriction( : [—1, 1] — [—1, 1] is a bijection withg !(x) = -
Exercise

Let f : R — R be a function defined by f(x) = In(|z| + é)

1. Is f injective? surjective?

2. Show that the restrictiong : [0, +00[— [—1, +00[ with g(x) = f(x) is a bijection and

calculate the reciprocal function g.

Correction

1. Note first that fis a mapping because Uy = R because Vz € R : |z|+ 1 > 1> 0.

a) We have y = In(|z| + 1) <= z = £(e¥ — 1). We note that yy = 0 (for example) have
two antecedents and therefore f is not injective.

b) We have|lz| > 0 = y =In(|z| + 1) > In(1) = —1. We note that y = —3 (for example)
has no antecedent and therefore the function f is not surjective.

2. From the above study, we deduce that the restriction ¢ : {0, +OC[% {*1? +00[admits for
everything i € [~1,+00] has a single antecedent x € [0, +00].

Consequently ¢ : [U, +OC[—> [—L —FOC[ is a bijection with reciprocal mapping defined by

g_l(ﬂ?) — et %'
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1.3.Composition of functions, bijection and reciprocal function

Composition of functions:
Let be functions f : Dy — F and g : F — R. The composite function

o f is defined by: v €Dy, flx)eDy : (gof)(x)=g(f(x)).
gl
@p Fl@s) £ 3Im

X—— f(x) —— g(f(x))

Example: ' = F = R
HWIff :x—a2*+landg @ 2 —= /2SO (go f)(z) :=g(f(x)) = Va2 + L.

2) The function u : t — cos(wt + ¢) is written as the composite form u = g o f with

fit=2wt+yandg : = — cosx.

Noticed
In general, we do not necessarily have / \ ///u\\ / \
f(Dy) C D,. In this case, the definition set
/T Jr———» | g,
ofg o f is given by: O| ren= riapha; | |
Dyos = {x € Dy et f(z) € D,}. \/ \/ \/
Exercise

Complete the following table (in this exercise we are not interested in the domains of

definition).
no 1 2 3 4 5 6 7
x 1 20+ 3
: _ 29 L 29 Z
flz) x =7 £ T+ 2 S ?? - 7
] ‘ Y 1 ! 29
glf(z)] ?? Va? =5 ?? ?? - p p
Correction
gof .
r‘-"l--} -\-H—H"J
R » [ g » B
xb—— y=flx) —— z=g(y) = g(f(x))
Recall
l):xi>y::x—7£>z:\/§ by replacing we get gof::c—)g(f(z))zx/:c—'?.
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D —y= r4+25 =3y by replacing we get
gof:x— g(flx)) =32+6
4) x AN y=-2 %5 ;= 1 by replacing we get

Noticing that { = g we can write f(f(r)) = ie. fof=1Id, f is said idempotent.

2) x ER y=f(z)Sz2=\y—5= Vf(x) —=5=1+/22 =5 by comparing we deduce
fla) =22

f g 1 1 . 1
Sr—oy=fz)>z=1+-=14+—=1x by comparing we deduce xr) =
)T fo=5=
1 g 1 1 . 1
6)r—y= o = z=g(y) = g(;) =x =7 by comparing we deduce g(y) = 5
2043
Nr—y=flr)= — 5 2 =g(y) = 9(f(x)) = (go f)(z) = = we deduce that
g=7"
2 3 3—T
We therefore seek = such as y = T . Solving this equation, we get T = y,
T+ 7 y— 2
3T
thatis g(y) = = 21}
Exercise
Consider the functions from R towards R defined by
1
ulx) = vix) =In(z) , w(x)=e"
@)= . @ =hE)

Give the definition set of each of the following functions and write explicitly the

expression of the composition:

1) uow 2)vou 3)wovou
Correction
| |
1 \
u— u(r) = ||
u — u(x) T \\
Its domainis D, =R\ {-1} —_— -
and its range is I m(u) = R*, \‘\\ [
v — v(x) = In(z),
Its domain is D, = R, )
and its range is Im(v) =R, f
|

49




/
) ’ — €T /.a
w— w(r) = e*,
Its domainis D,, = R )4
. -
and its range Im(w) = R7. .

1
l))mv ={reD,=R} v(r)=In(z) e D, =R\ {—-1}}

= {x € RY : In(x) # —1}
=R\ {3}

1
wow(x) = fu.(?:(.r)) = u(ln(:r;)) = TH(J?) re R\ {%}

2)
Dmu{xeDﬂR\{—l}:u(az)H% €D, — R}

={zeR\{-1}:2> -1}

=] —1,+00[

vou(w)= v(u(az)) = L(lj%x) = ln(HLw) , x €] —1,+00][
3)
D‘UJG?.’D’M - {CL € D?:Gu :} - 11 +OO[ vo U(.’L') = 11’1(1 j_ f]j) = Dw = ]R}
=] — 1, +o0|
wovou(z)=w(vou(z)) = -u:(ln(ﬁ) = H% . r €] —1,400].

Question: functions U and W © U O U are they equal?
(Answer: no, they have different domain. w o v o u is the restriction of ¢ to | — 1, +-0c|)

Bijection and reciprocal function:
Consider f : E — F.

1) f is bijective if and only if: it exists g: F — E suchas fog = Idp
and go f = Idg.

2) In this case the map ( is unique and one-to-one.

3) The function ¢ is called reciprocal bijection of f and is noted ..
we have (fH't=r.

and we have (gof) ' =f1og L

4) Whether f : £ — F and g : F — G are bijective then g o fis bijective
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Example:

f R —]0,+00[ defined by y = f(z) = exp(z) is bijective. Its inverse bijection is
¢ :]0, +oo[— R defined by z = g(y) = In(y).
Indeed, we have: VzeR : (go f)(z) :=g(f(z)) = In(exp(z)) = z;

and Vz €]0,+o00[ : (fog)(x):= f(g(z)) = exp (In(z)) = z.

Attention: one may discern between S @) and [f(z)]' = L

flx)

To rememper: Forf : E C R — F C R the curves representative of f Andf~* are
symmetrical with respect to the first bisector

Y f

i

el
Il
b

/ X

-

1.4.Variations, parity, periodicity

It is important to memorize the general form of curves for the usual
functions and even more to know how to read the curve to easily deduce
the properties of these functions.

Curves and direction of variations:

1) A function f is said to be increasing over an interval I C D; if
Va,bel : a<b = f(a) < f(b).
The curve of an increasing function is ascending.

2)A function f is said to be decreasing over an interval | C D; if
Va,bel : a<b = f(a) > f(b).
The curve of a decreasing function is descending.

51



Example : \ a / :

If n=2p, p € N*, function \\ /
frxeR— 2" neN \ /

is decreasing on| — oc, 0) and increasing on
(0, +ocl. /

Exercise

Plot on the same graphic the curves of the following functions then give their direction of

variations. (Compare the variation with the linear one, in neighbourhood of +c).

1 1
fix—a | g:x%ﬁ \ h:ao— a2 ;o UIT -, WIT > .

T €T
Correction

is strictly increasing on } — 00, +OO[.

fre—=flr)=2

(It is linear, f(x) varies proportionally to x.)

is strictly increasing on } — 00, +OO[.
g:x—glr)= \/E (Its vartation in the neighbourhood of +oc is slower than a linear
function).

is strictly decreasing on } — 00, 0[ and strictly increasing on
10, +-00].

(Its variation in the neighbourhood of +oc is faster than a linear

function)
u:r—ulr) = 1 is strictly decreasing on| — 00, ([ and on |0, +00].
X
1 | is strictly increasing on] — 00, 0[and strictly decreasing on]0, +-00]
w:x—w(z)=—
o
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Curves and parity:
1) A function f is pair whether:
v €Dy < —u € DiAndf(z) = f(—x).
The graph of an even function is symmetric with respect to the axis
(y'Oy).

2) A function f is odd whether:
v €Dy < —reDiAndf(z) = — f(—x).
The graph of an odd function is symmetric with respect to the origin O.

Example: 4

X
.y ]
=x<p+1

y

Function f:2 € R — 2", ne N
is even ifn =2p, p € N*,
ltisoddifn =2p+ 1, pe N,

Example:

The cosine function is even The sine function is odd

‘/ \_// \\ //
To.: cos(x) b. : cos(2x) c. : 5¢cos(X) To.: sin(x) b. : sin(2x) c. : 5sin(x)

Exercise

Study the parity of the following functions?

filz) = 2% — 1 +sin’(z) |, fo(z) = %
_sin®(x) — cos(3x) i

fs(z) = tan(z) fa(z) = m + cos(x).
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Correction
1) fi(z) = 22 — 1 + sin®(x).
Dy, =| — 00,+00], the domain of f1is symmetric with respect to the origin i.e.
r€ Dy < —x€ Dy.and
fi(=2) = (=x)?> = 1 +sin?(—z) = 2% — 1 +sin?(x) = fi(z),

so, the function f1 is even.

tan(z) — m

. We have 2% cos(z) = 0 < :L'=U\/:L':(2k:-l—1)2

2) fo(w) =

, k€Zth
x3 cos(x) ‘ then

Dy, = ..U =, -3 - 3 2] — 2,00U]0, +3[U] + 5, +38 (U] + 2, + 32U

the domain of f is symmetric with respect to the origin i.e., 7 € Dy = —x¢€ Dy and

)= tan(—xz) — (—)z _ - tan(z) + x _ tan(z) — x s
Ja(=2) (—x)3 cos(—x) —a3 cos(x) a3 cos(x) Jalz).

We deduce that the function f2 is even.

=2
. _ 5(3
3) fa(x) = o (xt)an(:ic))b( I) We have tan(z) =0 <= z=kw, k € Z, then

Dy, = ..U =21, —7|U] = 7, 0[U]0, +7[U] + 7, 4+27|U..., the domain of [+l is symmetric with

respect to the origin

ie., v € Df <= —x¢€ Dy and

sin?(—x) — cos(—3z)  sin®(z) — cos(3x) sin(z) — cos(3x)
f3(—z) = = = - = —f3(x),
tan(—z) — tan(x) tan(z)
the function f5 is odd.
: xr—1 :
4) 14(23) = m + COS(I‘). We have Sll’l(.’f—|— 1) =0 <= x=km—-1. keZ,the
domain of f3 is symmetric with respect to the origin and
: —r—1 —r—1 r+1
—r)=——"—=+co8(—2) = ——— + o8 = —— + COS ,
fa(=) sin(—x + 1) cos(—r) = = sin(z — 1) cos(z) sin(x — 1) cos(z)

the function f; is neither even nor odd.

Curves and periodicity:

1) A function f is periodic of period p > 0 (or simply p-periodic) if
Ve e Dy : f(x+p) = f(x).

It follows by iteration that: Vx € Dy : f(z+kp) = f(x), k€ Z,
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The graph of a periodic function
repeats every interval of length

P units.

Exercise
Calculate the period of the following functions:

filz) =cos(3z) ,  folz) = /tan(z) , f3(z) =cos'(8z) , fi(z)=]cos(5z)]
fo(2) = cos(32) + sin(22) . folw) = O L0y = cos(5e) sin(3a)

sin(5x)

Correction
1) fi(x) = cos(3x).
2T

filz +p) = filz) < cos(3z+ 3p) = cos(3z) <= 3p=21 < p= 3

2) fo(x) = /tan(x).

falz4p) = fo(x) < y/tan(z +p) = \/tan(z) <= tan(z+p) = tan(z) <= p=r.

Pl

3) f3(x) = cos?(8z). The function cos(8x) is g- then f3(x) = cos*(8x)is also i-periodic

(simple calculation).

2 T
4) fi(z) = | cos(5x) |.COS(5I)EastTTr-peri0dic then fy(z) = | cos(5x)| is also %-periodic.
D

2m
5) f5(x) = cos(3z) + sin(2x)].We have cos(3z) ?-periodic and sin(2z) 7-periodic; the
2m

period of the sum isppcm(?, ) =2m
6) fo(r) = % = tan(5z). The function tan(z)is m-periodic so tan(5x) is g-periodic.

, : 2m : 2m
7) fr(x) = cos(5x) sin(3x). The function cos(5x) is —-periodic and sin(3z )is 5

5t
2 27

periodic; the period of the product is ppcm(T, ?) =27
2
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1.5.Translations, expansion, contraction, inversion

Translations:
Knowing a function [ and its curve C¢, we can deduce

Ithe curve C, of x — g(x) = f(z)+ C, C €R by translating vertically
Crof C units (up for C > 0 and down for C < 0).

2)the curve C; of ©t — g(z) = f(x —¢c) c€R by horizontal translation of
C's of ¢ units (to the right for ¢ > 0 and to the left for ¢ < 0).

y=flx+1) )
Fa ¥ ¥= fix)

Expansion, contraction, inversion:
Knowing a function f and its curve Cy, we can deduce

I)the curve C, of © — g(x) =K f(z), KeR
a) if K > 1, by expanding vertically by a factor K the curve C;.
b) if 0 < K < 1, by contracting vertically by a factor K the curve.

c) if K <0, by an inversion followed by a dilation or contraction of a
factor |K| the curve C.

2) The curve C, of x — g(z) = f(kz), keR
a) if k > 1 by contracting horizontally by a factor i the curve C}.
b) if 0 <k <1 by expanding horizontally by a factor I the curve C}.

c) if K < 0 by an inversion followed by a dilation or contraction of a
factor |K| the curve C.

¥

w= Flx)
i = Frzdy
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Example:
Consider the function / defined on R by g(z) = —22% + 4z — 3.
The canonical form of the polynomial of the second degree makes it
possible to write
g(x) = —2(x — 1)* — 1.
We know the graph of the function/defined by f(z) = 22

The graph Cj; of the function ¢ is obtained from C
by carrying out the following successive
transformations:

1. right translation of 1 unit, y=(r—1)>2

2. axial symmetry with respect to (x'ox),

y=—(z-1)
3. wvertical expansion by a factor of 2,
y=—2(x—1)°

4. translation of 1 unit downwards,

y=—2(x—-1)*-1.

Exercise
For each function, draw the representative curve, then indicate the definition set

(domain) and the image set (range):
filey=a* , flo)=1-2* | file)==20a+1) | filz)=Ve
fle)=3ve=1 , fole)=V3e—=1 , frlz)=Mn(x) , fs(z)=In(-z)
folz)=In(zx—=1) , fiolz)=cos(z) , fulzr)=cos(2x) , fialx) =1+ cos(2z)
fule)=2" -1 ful@)=]-1 . fisle)=-1+]" -1

Correction
filx) = a?
Dy, =Rand Im(f1) = [0, +o0]
folz) =1 —a?
Dy, =R and Im(f3) =] — oo, +1] 1 ~
fa(x) = —2(x + 1)?
Dy, =Rand Im(f3) =] — 0o, +1] | .
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Dy, =Ry and Im(fy) = [0, +o0] ravET
fs(x) =3vae —1 - e
folz) =vBx -1 7

Dy, =Ryand Im(fy) = [-1, +o0] -

fr(z) = In(x)
L
Dy, =Ry, Im(f1) =] — oc, +o0|
= In(—x) In{x)
fo(@) = In(~a) TTe. e Inlx=1)
Dfs = R*_, Im(fs) :] — 00, +DO[ :r"" L ﬂ-‘ ..-"i
F -k :’ hl-s x
fo(z) =In(z — 1) 1 ;
Dy, = [1,4oc], Im(fy) =] — 00, +o0] v/
fio(x) = cos(x) y,
Dfy =R Im(fi) = [-1,+1] p=2n,
fi1(x) = cos(2z) Foed 1 II'-_1+cnsf2.r]
Dfll B R/ Im(fll) = [_11 +1],p =, ;"’ “., f::; c';:\ \‘t
fi2(x) = 1+ cos(2z) R ‘%l a b I S
T ! 4 cos(x)

Dy, =R Im(fi2) =1[0,+2] p =7, S~ s

fiz(z) =22 -1
D¢, =R and Im(fi3) = [-1,4+00]
fua(x) = [2* — 1

Df14 =R and Im(f14) = [07 +OO[

fis(z) = =1+ |z% — 1

Dy, = R and Im(f13) = [=1,+00]
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4th chap. : Limits and Continuity

1 LIMITS OF A FUNCTION

Limit at a point (intuitive definition):
Let f : Dy CR— R be a function.

1) We say that [ admits for limit at x if the distance between f ()
and l is as small as we want [ as soon as z is close enough to x.

2) We say that f admits +oo for limit at x, whether f(z) is greater
and greater as soon as the distance between & and x is small
enough.

3) We say that f admits —oo for limit at xoy whether f(x) is smaller
and smaller as the distance between x and x is small enough.

1.1. Notion of distance

We define a distance in R*as following:

Definition: (distance)
1) A distance in R" isa map d : R" x R" — [0, +00[ such that

i) Vo, y € R" d(z,y) =d(y, ) symmetry
ii) Vo,y € R" dlz,y) =0 < x =y separation
iii) Vo, y. 2 € R" d(z,z) <d(xz,y) +d(y,z) triangular inequality

2) d(x,0) := ||z|| is the norm of = € R".

In particular the "Euclidean" distance" is defined in R":

1: ryeR - d(xy)=/(x—y)?=|z—y

[x| [x—¥]

r=(r1,72) , y= (y1,12) € R? d(xz,y) = \/(3’31 — 1)+ (22 — 12)?
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n=3: v = (11,22,73) , y = (1.2 95) €R®  d(z,y) == (21— 1) + (22 — 12)> + (23 — y3)?

1.2. Notion of limit by neighbourhoods
We agree to call neighbourhoods of a € R" sets
Via) ={x e R" :d(x,x0)) <r, r>0}
AB: The notion of neighbourhood of a point is very useful in analysis.

In fact, a neighbourhood of a is any set containing a ball cantered at a.

In particular a neighbourhood of a € R is:

n=1: Any interval cantered at « € R and radius r > 0:
reVia) < Ir>0: |jr—a|/<r <= Jr>0:a—r<z<a+r

n=2: Any disk cantered at a = (a, a3) and radius r > 0

z€V(a) < Ir>0: dx,a):=(r1—a1)>+ (22 —a)? <r

o

disc in Rz

n=3: any ball cantered at a = (ay, a2, a3) and radius » > 0
reV(a) <= Ir>0: dx,a):=+/(x; —a1)®+ (x2 — a2)® + (z3 — a3)? < r.

Limit at a point (rigorous definition with neighbourhoods):
Let f : Dy CR — R be a function and [ € R.

1) We say that the limit of f when x tends to g is !

(we write lim f(x) =1 or f(x) —— 1) if:
T+ T—To

for every = > 0, there is a neighbourhood V of x (interval cantered at i)

such that reV = d(f(ﬂf),l) < E.
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2) We say that the limit of f whenztends to x( Eis +o0
(we write lim f(x) = +oc or f(z) —— +o0) if:
Tr—rq

Tr—o

for every A0 there is a neighbourhood v of 2 (interval cantered at J30)

such that reV — f(m) > A-

3) We say that the limit of [ when x tends to zg is —cc

(we write lim f(x) = —o0 or f(x) —— —o0) if:
Tr—xy TrT—Ip

for every A >0, there is a neighbourhood V of xy (interval cantered at z,)
such that reV = f(a:) < —A,

1.3. Other limits

Limits at infinity:
Let f : Dy CR — R be a function and [ € R.

1) lim f(z)=1[if and only if:

T—+00

Ve>0,itexists A>O0suchast > A — |f($)fl] < €.

2) lim f(x)=1[if and only if:

T——00

Ve>0,itexists A>0suchasr < —A = |f(z) =] <e.

¥
¥

N

J T r

b |

3) lim f(x) = +oo if and only if:

T—+00

¥V A>0,itexists B>0suchast > A = f(z) > B,

4) lim f(r) = —ocif and only if:

T—+00

VA0 itexistsB>OsuchaS$>A — f($)<—B'
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Limits in one direction:

Let f : Dy CR — R be a function; in R there are only two possible
directions to go to a point xy € R, hence the two definitions:
1) lim f(x)=1if and only if:
Ii)’l‘g
Ve>0,itexists 0 > 0such as
—0<r—x9<0<d = |f(x)-1| <e.
2) lim f(x)=1if and only if:
x%?‘o

Ve>0,itexists 0 >0suchas0<z—xy<+d<d = |f(z)— 1| <e.

¥
E(x)
e——
lima E +=-—-———- +—
l
limz E - — e
|
|
L
0 2 X

Proposition:
Let f : Dy CR— R be a function

lim f(x) =l if and only if li(m f(@) =lany li>m flx) =1.

T
o T—>xq T—rxg
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Exercise

From the drawing give:
1) the expression off(JJ)

2) the limits at the pointZo = 1 and its

image.

fx)

Correction

-1 six<l1

1) fley=<2 siz=1

+3 six>1

2) lim flx)= -1, lim f(x) = +3md f(1) = +2.
r—>1 =31

1.4.

Limit properties

Proposition (Unicity of the limit):

If a limit exists then it is unique.

Property (Operations and Limits):

R =

Let f1 and fa be two functions defined close to =o € R, such as
filr) — 1, €R and fy(z) — I, € R, then by agreeing in
T—+T =T

1 1 ,
RU{—00,+0c} that o = ¢ and; = 0 we have

filz) + filz) — - li+1y except for the case —oco + oo (which is an indeterminate
i)}

case).

fi(z) x folz) —— [} x Iy except for the case () x oc (which is an indeterminate
T

case).
YAER: (A fi(x) — M.
[, £0 and 0 cl h ! > 1
#0 and f;(x) # 0 close to z( then 7. () P I
lo # 0 and fa(x) # 0 close to x( then Si(@) > h except for
2 2\ 0 f2 (x) 70 l2
0 o0
cases — or — (undetermined cases).
0 oS
If f(x) — 1 €R and g(z) — L €R, then (gof)(x):g(f(:c))—>L
T r—l n—rg
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Example:

Tetu : T — u(m) be a function and g € R such as ?L(.’I?) — 2. Pose
T—rIg

flx) = \/1 + 71.2}:1:) +Inu(z) .

If it exists, what is the limit of f in z;?

Correction

Frirst, let’s calculate separately the limits inside the radical:

—_

1
1) We have uz(:t) —— 4; so close to 1 we have UQ(JE) % 0 and then 5
2= u?(x) w—wo

.-'Lk-

2) Similarly, ?L(.CU) — 2 then, close to U2(3L‘) > 0 then In u(:l‘) is well defined and
r—rp

Inu(zr) — In2.
T—

3)1 + +1n2

= | O

1
207) + Inu(x) " 1+Z+IHQ =

4) Finally, the composition rule gives

1 5]
TIEIT;U flz) = TlgITlU \/1 + () +Inu(xr) =4/ Y In2

1.5. Calculation of limits

Theorem (Comparisons):

Let f1 and fa be two functions defined close to =p € R, as
filr) —— I, € Rand fy(x) — I, € R then
T—Iy T—Iy

e if close to xy we have f1(33) < fg(il?) then l1 S lQ.
e if a function g defined close to xy check

filz) <g(x) < folw) ana =1
then for x — x the limit of g(x) exists and we have

lim g(z) =l = la.

T—T0
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AN

lim, f=lim,_ g=I1lim, h

O\

Attention: the strict inequalities become wide inequalities after passing to
the limit. For example,

Ve eV, : f(z) <g(zr) = lim f(zr) < lim g(x),

n—xo n—Ig
Exercise
. In(x . exp(z
Demonstrate the following limits: 1) lim (z) =0 2) lim p() = 400
r—+oc I r——+oo xT

Correction

///'

1) The curve of the functionzz — 1ni(zx) is located below the Ist bisector; consequently ¥V 2 > 0 @ In(x) < 2 so that

In(x)
< 1. We deduce
x
O<m@<mﬁﬁ_mﬁgz<2
T ox T Vr o VT VT T
. In(x) . 2
The comparison theorem allows us to deduce O < Iim < lim — =0
T—+00 r T—r+00 r

2) We put & = exp x, then & ——— +0C and we get
T—+00

. In(u) : x . expw
0= lim ( = lim = lim = +0cQ.
u—r+o0 U rz—+o0 eXP T r—+oo U

Definition (Equivalence, domination)
Let f and ¢ be two functions defined on R and x, € R.

1)We say that | is equivalent to g close of z if there is a
neighbourhood V,,, of xq and a function ¢ : V' — R checking

VeeV: f(z)= g(a:)(l + 99(13)) with lim p(z) = 0.

Tr—rIQ
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If g(x) does not vanish in V,,,, we can write more simply:

. f(@)
lim =1, We note f ~ g,
= g(;}g) 0
2)We say that f is negligible compared to g close of x if there is a

neighbourhood V,,, of xoy and a function ¢ : V' — R checking
VeeV: flx)=g(x) o(x) with lijn p(x) =0,
T—IT0

If g(x) does not vanish in'V,,, we can write more simply:

lim %) — —
Jm (@) 0. wWenote | ” 0(9).

Properties (Equivalence, domination)
1If fi ~o(q)and fy ~ o(gs) (which do not vanish close of ) then
To xo

Ji g1
~ —_— ~ QO —
J1 X fa - 0(91 X 92) and f2 0 (92)_

2) fi = o(g) and f2» = o(g) then fi+ fo =o(g)

Zo Zo

Attention: equivalence is not preserved by addition or composition.

Example:
2,49
) et +3z 562-|-3$ $2
7) we have 12 + 3 ~ 72 but lim = lim ¥ = +x £ 1 and e 7L €
+00 z—+o0  eF r—+00 +00

2) f(x)=a*+32x ~a2?and g(x) =1-2% ~ —z? but we clearly see that
+00

+00

f@) +gla) =30 -1 £ () + (-2%) =0,

Examples:(to remember)

1) For a polynomial function P(z) = ag + a17 + asz® + ... + a,2" we have
P(z) ~ ay,z® and P(x)~aqy (si ag #0)
+oo 0

atart a9z + ... 4 a,z"

2)For a rational function F(z) = b D12 bot® o ba?
0+ 012 + bp2” + .. + by

(an, b, # 0) we have

a, "

and P(x)~ a0 (si ag, by # 0)

F(ZE) ~ 0 b(]

+00 byaP
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3)Trigonometric functions:
. 22
sinr ~x tanx ~x 1—cosx ~—.
0 0 0o 2

4)Logarithm, exponential, power functions
ln(l—l—:c)rax, e‘”—lr(\;:c, a”’—lrga:lna, (1—|—:c)"‘—1r0vaq;.

5)Fork > 0, a, 3 > 0 ("logarithm << power << exponential")
a

, . (111&5)‘3 o kay : £z
) = ofz®) ie I —0 and " = o) e lim —=0,
(Inx) = o(z") i.e .TEEI}DO " 0 T (e") 1mtoo okt

Notice: Note that f I S —9T °(9),

hence, to find an equivalent to f it has to be written in the form of
dominant term + negligible term ...

3r—1 .
Example: 3? + 3z — 1 = 22+ o(z?) ~ 2? because lim >~ —ole,3r-1= o(z?).
+o0 +oo

T—+0o0 xT

Examples:(to remember)
From the previous remark we can write:

a) Trigonometric functions:
sinxﬁaﬂ—o(a:) , tan:z:?a:—l—o(az) : cosz =1 — — + o(z?).

b) Logarithm, exponential, power functions
In(1+z) =+ o(xz), " =lta+ o(x),

a3?1+$lna+o($)
and (1+$)“?1+a:ﬂ+0($)-

Proposition (Limit calculation by equivalence)

If [ and g are equivalent close of x, and nlgg g(x) =1 then
0

lim f(x) =1,
n—rTo
Exercise
492 , evV® 42
Calculate the following limits: 1) lim L 2) lim ———
r—+o0 22 + In(z) e—+o0 22 4 In(x)
. e’ — 63'2 . T+ 2
lim ——— lim  ———— lim 2z In(z + /)

3)9:—>+oc 24 et 4)5'3_>+Oo z? hl(T) 9)x—0"
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3 2 .
.ox? =242 t — 1 3
lim ————— lim — % lim 2 In (:L + 4)
6yt @ In(x) 7yr—0* In(x + 1) g)r——oc x4 1 1 —a?
lim (2% — 1) In(72* 4 42 + 3) lim(—1)* lim zIn(z) —zn(z +2)
9)z—toc 10)z—2 11)z—++0¢
r+1\* (P +5\
lim (1 + z)"® im (T_'_ ) lim ( 5 ) o
12)z—0+ 13)z—+00 \ o — 3 14):1:%+oo x4+ 2
e+ 1\ 551 . L L (r+ 1)
15) i ( ) 16) lim (In(1 (o) 17) lim ~— .
),tll}l—il—loo T+ 2 ):(rLI(IJl"‘ ( n( * fl')) )$—1>I—Poo rrtl
Correction
2 : 2
"2 ol e w52 o Lo
2+ 1In(z) +0 22 x r—too 2 +In(x)  wotoox
evVT 42 eVe , eV' 42 .eVT
then lim ——————= lim —- = +00 because

2)— ~ —
)Iz + IH(CE) oo 2 oo 12 + 1H(I) To+too T

(lnz)” = o(z").

+0¢
e — 6;1'2 _83:2 et — e:cr‘) _6132
~ lim — % — —
3).772 +e % 40 2 then T—1>Toc 22 +e® T—1>Toc 22 >
xr+ 2 x 1 x+ 2 1
)3:2 In(x) +o0 22 In(x)  z In(x) ten Lo 22 In(x) o0t @ In(x)
5)2zIn(z 4+ v/z) = 2rIn (y2(yvz + 1)) = zIn(z) + 22In(yz + 1) —— 0
x—0
. ad — 222 42 A . lim 3:3—29:2-1-27 i z? e
A In(z) +ec zIn(z) In(z) ten e x In(r) =0t In(z) '
6) We recall that In(1 + z) =z + o(x)
lim In(3z + 1) = lim 3z +ofx) = lim §+ Lo(@) :é
z—0F 2z =0t 2T X-0t2 2 =z 2
. ' —1 ern(@) _q T In(z) eX —1 T .
= nix) = t
)1n(:c +1) xln(z) In(zr+1) X In(z+1) o
T _ X 1
lim ———— = lim ——. lim —— . lim In(z) = —o00

e—otIn(z+1) X200 X asotln(z+1) eso0t

because In(z + 1) ~a and e¥ — 1 ~ X.
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8)

2 l($3+4)_ 2 ( 1+4/9:3)

_17
s+l o\ —22) T T T
) 2 1+ 4/s8
()
p ey el N o

—2r  In(—x) 2 1+ 4/2
X + Xln( )

r+1 —T r+1

—— —-2x04+0x0=0.

r—r—0C
9)
2
e —1 .
(2 — 1) In(72° + 42° + 3) = m (T + 42® + 3)In(72° + 42° + 3)
(z—1)(z+1)
= XIn(X
(x+1)(7T2? — 3z +3) n(x)
r—1
- X XIn(X)
Tx?—3x+3
—2
e 0 =0
a—(-1)* 13
10)
2 3 _(@-27 4 3
(x —2)7In(z” — 8) = P (7 — 8) In(x” — 8)
(x —2)?
— XIn(X
Gty )
r—2
"o <)
X %0 =0
T—2
11)
zIn(z) — zln(z + 2) = —z( — In(z) + In(z + 2))
x+ 2 2
S — (142
T n( - ) T n( + $)
_ In (12—|— %) s In (1 —|—X) . o
X X—0

T

mﬂmmnmd1+@“§1+ax+omxmm

(142)®) =1 4+ zIn(z) + ofz) — L

=0T
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13) Recall that In(1 + z) n z 4 o(z) then
r+1\* a+1 z=3+4 4
( ) — ot ln(mi ) — ot In(£=1= —= ) — ot ln(l+$73)

r—3
4 4 Az 4
T—+0o0
14)
1H($3+5)
3 o+1 x+1 ;133+5 x2-|-2 3 .
T+ 5\ 2241 s+l ]n(m3+5) 1241 2242 2945 (z41)(2°+5)  In(X)
( 3 ) — pzltl 2+2) = ¢ 242 — ¢ (22+1)(x%+2) X
T4+ 2
X=400
eV =1
T—+00
15)
1
—_— HA
(6 * 1) T _ ekt (5 = ¢ o (e )z es2)
T+ 2
T In(x In(X
=€ :c-}-l ln(e +1)_%ﬁ Ec-l-{j) = e ﬁ Ine” (1+8$) ifﬁ X)
In(X
g ok By In(l ) 252 0
T +CL:C III(H‘CLI) 242 In(X)
—¢ z+1 " x+1 Elf z+1 X

1 In(14+Y) 242, In(X) ‘
— e TtEEm vk Y2OATT 10X +1x0
T—+00

16) We recall that In(1 + z) =u+ o(x)

ze(z)
: In(z+o(z)) nz(+—57)
(11’1(1 —|— '”L‘)) In(z) =€ ln( ) In (ln(l-l-a:')) =€ In(z) =€ In(z)

In(14€(z))
61+ In(z)

— €
z—0t

17) We recall that In(1 + ) =+ o(x)

(z+1)" ern(z+1) _ prn(e+1)—(z+1) In(x)

g+l o(z+1)In(z)
_ eazlnaz( +2)—(z+1) In(z) _ e.rlnat—l—a?ln(l—l—%)—ctln(a:)—ln(:n)
1 111(]+L)
r - —1 % —In(z) In(1+X) X—0
— e I e X In(z) s ()

T—400
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2 CONTINUITY

2.1.Definitions

Definition:
e We say that a function [ is continuous at a point rp € R if

rg € Dy and Ih_{TIlO f(x) = f(xo).

e We say that f is continues over an interval I if { is continuous at

all points 1.

Intuitively: a function is continuous over an interval, if we can draw its
graph “without lifting the pencil”, i.e., its curve has no jump.

Here are functions that are not continuous inz:

| Xp X X X
CONTINUE LEFT NOT RIGHT NOR LEFT NOR RIGHT NOR LEFT NOR RIGHT.
Example:
The integer part function :
T = o
r— f(r) =[z] = E(z) = Ent(x)
|
has a discontinuity in each integer value of x
| + -
because
VneZ : lim f(z)# lim f(x) 0 1T 32 3 X
mihl a:i)n e

Netice: for every n € Z, functionz — f(x) = Ent(z) is continuous on the left
and discontinuous on the right.

Exercise

In a game Mario runs and jumps to the right.

| ey

We note X its horizontal position. Its height h

is described as a function of X by the 1 &

following function (defined piecewise):
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T+3 si0<z <3
9—=x sid<ae<d
—4a? + 392 — 87 sid<z<6
—22 4162 -57 si6<x<9

h(z) =

Show that Mario's path is continuous on the interval [0; 9]. In other words, check that

the function h is continuous.

Correction

For 0<z <3 function * = T + 3 is continuous.

For J<z <4 function x — 9 — x is continuous.

For d<r<b function # — —4x? + 392 — 87 is continuous.
For 6<r<9 function  — —x2 + 162 — 57 is continuous.

. . . . . . . P
It remains to check if the successive curves meet, i.e., the function h is continuous at 1 = 3

, T2 =4 and 23 = 0.

lim h(z) = lim 243 =6 and lim h(z)= lim 9—2z=6=h(3) so the function h is
;ri)'a:l J:i>3 ;ri):cl :r.i>3
continuous at T1 = 3.

lim h(z)=lim 9—z =5 and lim h(z)= lim —42” + 392 — 87 = 5 = h(4) so the function h is
;ri}.],’g mi)i .Ti>]'.‘2 ri)‘il
continuous atTs = 4.

lim h(z) = lim —d2* + 392 —87=3 and lim h(z) = lim —2* + 162 - 57 = 3 = h(6) so the function h is
Ii)l‘g x;ﬁ ri}rg mi)fi

continuous at 23 = 6.

Thus, the function h is indeed continuous on the interval [0; 9].

Exercise (Discontinuity of the first kind)

Let f be defined for € R" byf(z) = —. Is-it extendable by continuity at 0?

T
a

Correction

One should check if the left and right limits at 0 are equal with the image. We have
T -1 siz <0
hiz)=— = _
z |41 siz>0

Clearly -1 = lii’ﬂ flx) # hin f(x) = +1 so the function is discontinuous at 0 and therefore
z—>0 z—>0

cannot be extended by continuity at 0.

AB: This kind of discontinuity is said to be of the first kind (limit on the left and
limit on the right exist but are different).
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Exercise (Discontinuity of the second kind)

1
Let f be a map defined by 7 € R” f(x) = sin —. Is-it extendable by continuity at 0?
I

Correction
dn+1)m
_ ) = T sin _
Form—mwehavefﬁﬁo <= N — 00 and Ilﬂlof(x)—nlgnmaln——ﬁ—l
o . (dn4+3)7
Forx = mwe haver — 0 <= n — o0 and lim f(z) = lim smg =-1
0 n—roe

For two different paths we had two different limits so the limit does not exist. Therefore,

cannot be extended by continuity at 0.

NB: This kind of discontinuity is said to be of the second kind (limits on the left
and/or on the right do not exist).

Proposition (Examples of continuous functions)

The following functions are continuous over their domains:
- Polynomial functions (they are continuous inlK)

- Rational functions (fraction of polynomials)

- irrational functions (roots)

- trigonometric and hyperbolic functions

- reciprocal trigonometric and hyperbolic functions (arcsin, arccos,
argsh, argch, arctan ...)

- exponential functions

- logarithms functions.

2.2.Continuity and function operations

The elementary operations (addition, multiplication, division by non-zero
and composition) preserve continuity.

Proposition
Let f and g be two functions defined on an interval I, and a € 1.

If f and g are continuous at a, then

1.\ f is continuous at a (V) € R), 2.f = g is continuous at a,
3.f X g is continuous at a, 4. E is continuous if g(a) # 0.

5.If g is continuous at point a and { is continuous at g(a), then f o g is
continuous at a.
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In(x) + arctan(z? + 1)
2 -1 |
On Dy =€]0,1[U]1, +oo| function = — f(z) = In(z) is continuous and function

Example: study the continuity of f : z — f(x) =

2 -|_ 1 a’[-Ctan(.) t ( 2 + 1)
x —— arctan(x : . ,
(continue) (continue) is continuous (composed of two continuous

polynome

functions). So x — In(x) + arctan(z? + 1) is continuous (sum of two continuous functions).
In the denominator x — 2> — 1 is continuous (polynomial).

We deduce thatfis continuous on Dy.

NB: for a quick answer we will say more simply that the function
_In(z) + arctan(z? + 1)

frx— flx)= 5 is continuous because it is composed of
T —

continuous functions (composed in the sense of summation, product, division, composition,

efc.).

2.3.Sequences and Continuity

Proposition (sequential continuity)

Let f be a function defined on an interval I, and a € 1.
f is continuous at a if and only if for any sequence (u,,), we have

e @ T ) T Fa)

Notice:

This property is intensively used in the study of recurrent sequences
Up4+1 = f(’un): if f is continuous and U;, — [ then f(l) = .

Consider for example the sequence defined by ug > 0 and u,,.1 = /u,.

If the sequence (u,), is convergent then its limit / must verify / = /1, that
is(?> — [ = 0. So, the candidate numbers to be the limit of the sequence (uy),
are 0 and 1.

Exercise
Let f : R = R be a continuous function at 0 such that Vz € R , f(x) = f(2x).

Show that f is constant.
Indication: for fixed x study the sequence f(z% ).

Correction
Since Vo € R, f(z) = f(2x) we get for fixed T € R .
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fGa)=f@),  flzo)=fG2)=f@) f(mo)=f(z2)=f@)..
VneN, f(g%l“) = f(z).

. 1 .
Note Uy, = 37 T, we have u,, := % 2 — () and by continuity of f at 0 we get
n—r+00

f(0) =lim, s (g ) = f(z).

rcR being arbitrary, we deduce that VreR, f(T) = f(O) = cste,

3  APPLICATIONS OF CONTINUITY

3.1. Theorem: (intermediate values)

Theorem: (intermediate values)

Let f be a continuous function on an interval I of R and a.b € I with
f(a) # f(b), then f reaches all intermediate values between f(a) and

F(b).

In other words:

for any value y between f(a) and f(b) there is a value ¢ € |a, b| such as

fle)=uy.

Fib)

fla)r

*  fla) 1——/

INTERMEDIATE VALUE THEOREM (LEFT FIGURE), THE REAL C IS NOT NECESSARILY UNIQUE.
IF THE FUNCTION IS NOT CONTINUOUS, THE THEOREM IS NO LONGER TRUE (RIGHT FIGURE).

Corollary:
The image of an interval by a continuous function is an interval.

Attention : y
It would be wrong to believe that the image of
interval [a, b] by a function f is either the
interval [f(a), f(b)] or the interval [f(b), f(a)]

even when f is continuous (see figure).
For this f will also need to be monotonous
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3.1.1. Zeros of a continuous function

Bolzano's theorem : (zeros of a continuous
function) R [

Consider a continuous function f on an
subinterval I of R. If a,b € I verify

fla) < f(b) <O : hx
(i.e. have opposite signs), then there is a value ;) - _

¢ € |a, b]such that

f(c)=0.

NB: this theorem just guarantees the existence of a zero when the function
changes sign.
For uniqueness we need other assumptions, such as monotonicity.

Exercise:
Let f : R — R be the function defined by f(x) = 2% + x — 1073, Show that there
exists T € R such that flx)=0and0 <z < 11—0

Correction

The function is continuous (polynomial), f(7) = —107%" < 0 and
f(ll_o) =109 + % —107% = 11—0 > (; by the intermediate value theorem there exists (at

least one) = E}U, 0.1[ such that f(:l?) = 0.

Exercises
1) Show that the equation (1 + ¢”) = ¢* admits a unique solution [ € (0, 1).

2) Consider the function f : R} — R defined by f(z) =2 — 2+ In(x).
Show that the equation f(:l?) = () has a unique solution.
3) Deduce the curve of the following functions from that of r — 22, then study the
number of solutions of the equation f(:l?) = () over the interval I specified in each case
(without solving the equation):

a) f(x) =a? =16, I =]0,+00[ b)f(x)=2*—-160, I =] —oc0,0]

o) flz) =2 =2, I =] — o0, +00].
Fixes
1) Let be f : R — R defined by f(x) = 2(1 + €*) — €* then x is solution of the equation if and
only lff(.E) = 0.
This function is continuous f(0) = =1 < 0 and f(1) =1 > 0, so by the intermediate value

theorem, the function f has at least one root on |0; 1| which solution of the given equation.
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Let us show that f is monotone on |0; 1| to have uniqueness of the solution:
() =1+2ze* >0 Vz € (0,1) therefore the function is strictly increasing on (0, 1) and

consequently the solution is unique in this interval.

2) The function v — f(x) = x — 2 + In(x) is continuous on R* =]0, +o0.
filx)=1+ % >0 Yz €]0,+00[ i.e., the function is strictly increasing on |0, +00].

On the other hand, lim f(r)= —oc and E}III f(z) = +00 therefore, according to the intermediate
:cim 700

value theorem, the function f admits a root (unique because of monotonicity) in 0, +00[.
3)

a)f(z)=a®—16 , I =]0, +o0]

The function f is strictly increasing on |0, +o0c/,

continuous with f(0) = -16 and gm flz) = +oc.
T—7+00 /

By virtue of the intermediate value theorem,

the equation f(z) =0 admits a unique solution

on |0, 4+oc|.

b)f(r) =1*—160, [ =] —oc0,0]
The function f is strictly increasing on
] — oc,0[, continuous with f(0) = -160 and

lim f(x) = +oc.
400

By virtue of the intermediate value
theorem, the equation f(x) =0 admits a

unique solution on | — oc,0[.

o)f(r) =2 - V2, I =] — o0, +]
i) The function f is strictly decreasing on ] — oc, 0],

continuous with f(0)=-v2 and lm f(z) = +oc. \
T—r—00 BN

By virtue of the intermediate value theorem, the
equation f(x) =0 admits a unique solution on | — oc,0[. 1
The function f is strictly increasing on |0, +0c/,

continuous with f(0)= -v2 and ET f(z) =+, 1+

By virtue of the intermediate value theorem, the

equation f(r) =0 admits a unique solution on 0, +oc|. 0
In summary, the equation admits two solutions on
I =] — o0, +oq.
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Exercise (crossing continuous curves)

Consider f, ¢ two continuous functions from [a, b} into R such that j(a) < g(a) and
f(b) > g(b). Prove that it exists 2y € (a, b)such that f(xg) = g(xo).

Correction

We consider the function 22 from [a, b] into R defined by h(m) = f(x) — g(x).

h is a difference of continuous functions so it is continuous.

We have h(a.) = )‘(a} - g(a) < 0andh(b) = f(b) — g(b) > 0. We deduce from the intermediate
value theorem that there exists 29 € (a@,b) such that 0 = h(zg) = f(xg) — g(x0) i.e.,

f(zo) = g(x0).

Exercise (existence of fixed point)

Let f be a continuous function from [0, 1] into [0, 1]. Show that it exists [ € [0, 1] such
that f(1) = [ (afixed point of f).

Correction

If f(0) =0or f(1) =1 the problem is solved.

So, suppose f(0) # 0so f(0) > 0and f(1) # 1so f(1) < 1.

Consider the function ¢ : [0, 1] = R such as ¢(z) = f(x) — 2. ¢ is continuous on [0, 1] with
©(0) = f(0) > 0and ¢(1) = f(1) — 1 < 0 therefore it exists [ €]0, 1] such that

e(l)=f(l) =1=0, ie. fi) =L This is a fixed point of the function f.

Exercise (polynomials of odd degree)

Show that every polynomial of odd degree has at least one real root.

Correction

Let the polynomial of degree n be odd

n
P(x) = Zakxk —ag+ax+axt+..+a,a"
k=0
The polynomial function * — P (:C) is continuous. We have Oy 7& 0 and two cases arise:
1) ay > 0: JE}IE}C flz)=—00 and lim f(x)=+oc therefore, according to the intermediate

T—7+00
value theorem, the function admits at least a root in R,

2) ttp, < 0: lim
T

f(z) = 4o and gm f(z) = —00 hence by virtue of the intermediate value
00 T—7+0C

theorem, the function admits at least a root in R,

3.1.2. Dichotomy method (finding zeros of a function)

This is a simple algorithm for finding a zero of a continuous function f
over an interval I of R.

We start with two abscissas @, b € I which surround a zero of the function
(we check by testing the signs of f(a) and f(b): f(a) x f(b) <0).
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At each iteration, we cut the interval into two sub-intervals [a, ] and [c, b],
where c is the midpoint of aand b (¢ = (a + b)/2).

We keep the sub-interval that contains a zero (depending on the result of the test
fla) x fle) <0or f(b) x f(c) <0).

Then we cut this sub-interval in two, and so on.

In summary we must proceed as follow :
1. specify the bounds @ and ) > ¢ , the desired precision £ > () and give
the function f for which a zero is researched.

2. doaslongasb—a>€

1) calculate c = (a + b)/2,
i) if f(a)x f(c) <0 then assign to b the value of ¢ (b +—¢),
iii) else (i.e. f(D) X f(c) < 0) assign to & the value of ¢ (@ «— c).

3. Repeat steps i) , ii) and iii) of the previous phase (as long asb —a > ¢).

Example:

For an approximate calculation of \/2 nearly 1077, consider the function f(x) = x> — 2. Note
that \/2 is a root of the functionf.

Correction

f is continuous on [0,2]. Here is an Excel table that gives after 18 iterations V2 2 1.41421,
The calculations of

cr = (ap + b)) /2, signef(ag) , signef(ci) , signef(by) et Abs(ay — by)
are calculated by Excel via formulas. Just gradually
assign the value of ¢, to .1 if signef(a) = signef(cx)

or assign the value of ¢, to bk+1 if signef(by.) = signef(cp).

k ak ck b.k. Sif%;:)’f S}%;{‘)’f S}(gl‘)‘k‘;f Abs(ak-bk)
0 0.00000 1.00000 2.00000 1 1 1 2.00000
1 1.00000 1.50000 2.00000 1 1 1 1.00000
2 1.00000 1.25000 1.50000 1 1 1 0.50000
3 1.25000 1.37500 1.50000 1 1 1 0.25000
4 1.37500 1.43750 1.50000 1 1 1 0.12500
5 1.37500 1.40625 1.43750 1 1 1 0.06250
6 1.40625 1.42188 1.43750 1 1 1 0.03125
7 1.40625 1.41406 1.42188 1 1 1 0.01563
8 1.41406 1.41797 1.42188 1 1 1 0.00781
9 1.41406 1.41602 1.41797 1 1 1 0.00391
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10 1.41406 1.41504 1.41602 -1 1 1 0.00195
11 1.41406 1.41455 1.41504 -1 1 1 0.00098
12 1.41406 1.41431 1.41455 -1 1 1 0.00049
13 1.41406 1.41418 1.41431 -1 -1 1 0.00024
14 1.41418 1.41425 1.41431 -1 1 1 0.00012
15 1.41418 1.41422 1.41425 -1 1 1 0.00006
16 1.41418 1.41420 1.41422 -1 -1 1 0.00003
17 1.41420 1.41421 1.41422 -1 -1 1 0.00002
18 1.41421 1.41421 1.41422 -1 -1 1 0.00001
Exercise
Show that there is & €]0, 1], unique, such that arctan(z) = 7T/8.
Find the value of x by dichotomy with an accuracy of 1/10.
Correction
The function  — arctan(z) is continuous and strictly
increasing from R onto | —7/2,+n/2|. flx) y=tan(x)
We have 7/8 €| -7/2,47/2 then by mean of the a y=x
___________ 5 S RS Sk
intermediate value theorem, there exist ¢ € R (unique 13 = arctan(x)
par monotonicity) such as arctan(c) = 7T/8.
a; =0 = atctan(a;) = —0, 392699082 < 0, x
by =1 = atctan(by) = 40, 392699082 > 0.
Take f(z) = atan(r) — pi/8ande = 1072, -=--=s--i— e REEES
f(xk) <0 f(xk) >0
k ak xk = (ak + bk)/2 bk Error k = atan(xk)
- abs(bk - ak)
1 0,000 0,500 1,000 1,000 0,0709485
2 0,000 0,250 0,500 0,500 -0,1477204
3 0,250 0,375 0,500 0,250 -0,0339284
4 0,375 0,438 0,500 0,125 0,0197114
5 0,375 0,406 0,438 0,063 -0,0068164
6 0,406 0,422 0,438 0,031 0,0065217
7 0,406 0,414 0,422 0,016 -0,0001289
8 0,414 0,418 0,422 0,008 0,0032010
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3.2. Monotonicity and injectivity for a continuous function

Bijection theorem

If a continuous functionf is strictly monotone on an interval lof R, then

f is a bijective from I onto f(I).

Moreover, its inverse bijection is continuous and monotone from f(I)
onto I and of the same direction of variation as f.

Example
Let n>1and f : [0, +oc[— [0, 400 be the function defined by f(x) = x™.

f is continuous and strictly increasing. Moreover f(0) = 0 and f(z) — +o0
—++00

therefore Imf = [0,+oo[ and f : [0, +00[— [0, +0o¢[ is one to one

(bijective).

Its inverse bijection f ! is denoted: fﬁl(l‘) — 7% or also f_l(CC) = \n/f it is

the n-th root function. It is continuous and strictly increasing.

Exercise

Let be the function f : R — R defined by f(z) =2 -2+ In(z).

1) Show the existence of ¢ the inverse bijection of f.

2) Study the monotony and continuity of ¢ and specify its behavior (limits) at the

bounds of the definition set (domain).

Correction

1) The function © — f(x) = & — 2 + In(x) is continuous R* =)0, +o0.

flx)y=1+ % > 0 Va €]0,4+00] i.e., the function is strictly increasing on ]U, +OO[.

Its image set is | hmxim fx), lim, ., f@) =] - o0, +ox].

Therefore, the function f is one-to-one from R% to ] — 00, +00 [

2) f being continuous and monotone (increasing), according to the bijection theorem its

converse ( is also continuous and monotone (increasing).

On the other hand, lim f(1) = —oc involves lim g(x)=0and lim f(z) = +oc implies
2230 T —00 z—7+00

lim g(x) = 4.
L7 +00
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3.3. Extreme values theorem

Weierstrass Theorem (of extreme Values) :
A continuous function defined on a bounded
and closed interval admits a maximum and

a minimum on (called "extreme values").

Exercise
Let be f : Ry — R continuous admitting a finite limit at +0¢. Show that f is bounded.

Does it reach its limits?
Hint: thanks to the definition of the limit in 4+ 0, we can have a bound on an interval
[A, +00[; then work on [0, A].

Correction

Denote [ the finite limit in +00 and recall that lim f(x) = lif and only if

r—+00
Ve>0, itexists A > Osuchasz > A = |flx) =] <e.

—

In particular for € = 1, there exists A > 0 such that:
if z € [A, 00| then [—1<f(x)<l+1
which shows that f is bounded in [A, +00].

It remains to check boundedness on [0, A]. f is continuous on the bounded closed interval

0, A, from the extreme value theorem we deduce that f is bounded, so there exists

m, M € R such that V2 € [0, A] we have: m < f(z) < M.

Therefore, V2 € R,
min(l — 1,m) < f(x) <max(l + 1, M),
i.e., [ is bounded in R,

1
Example: Consider f : R;. — R defined by f(z) = Jf—Jrlf is continuous and has a finite
limit I = 0 at +o0;
we deduce from the above that f is bounded in Ry. f is strictly decreasing in R,

consequently sup f(z) = max f(x) = f(0) =1 (reached) and

x>0

inf f(x) = lim_ f(z) = 0 (not reached).

x>0 T—r+00
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oth chap. : Derivations - Approximations

1 DERIVATION

1.1.Definitions

Definition: (Derivation)

Let be I € R a non-empty open set. We say that a function f : I — R
is differentiable at a point xy (or admits a derivative at ) if the

A f(x) — flao
rate-increase gff) = ( 3: x( ) admits a limit Ar — 0, noted
) r— Xy

f'(zo), when Az — 0:

voon g f@) = flwo) . flxo+h) = flxo)
flao) = ngilo x—1x9 flalgtl) h '

f 1 = R isdifferentiable on I if it is differentiable at any point
of I.

The function x € I — f'(x) is called derived function of f and is

denoted [’ or (in Leibniz notation) T
B

Theorem: (differentiability implies continuity)

Let f be a function defined on an open interval [ C R and zy € 1.
If f is differentiable at xg then it is continuous at .

If f is differentiable on 7 then it is continuous on 1.

Higher order derivatives

For n € N we define by induction the n-th derivative (or derivative
of order n) of f by setting f) = f then ) = (f(n-1Y,

We say that f is of class C" on I, and we write [ € C"(I), when [ is
n times differentiable onl and the derivative f'" is continuous on I.

We say that f is of class C™ on I, and we write [ € C>(I), if f is of
class cm ON g, for every ,, - N-
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Exercise
We want to extend a parabolic segment by :

two lines, so that the function obtained is
everywhere derivable (see the opposite drawing). !
Complete the formula below with equations

of lines:

......... forz < —1
72

flz) = 5 — 20 for—1<a<3 —=
......... for © > 3

Correction

We must look for real numbers @ and b such that:

a(r+1)+2,5 forz< —1
2
flx) = %—239 for -1 <x<3

bz —3)—1,5 forax>3

2
xr
Note that © — a(z + 1) + 2.5 is differentiable on | — 00, 1[; T — O 27 is

differentiable on | — 1, +3]
and * — b(z — 3) — 1.5 is differentiable on | + 3, +00|.

I't remains that f must be differentiable at points —1 and +3.

1) For 1y = —1:

r)— 2.9 alx + 1
Left derivative: lim S~ 29 lim g =a
. x<—1 1 T+ 1 . x<—1 . r+1
Right derivative:
lim flv) =25 = lim ;—TQ/Q ~ =52 = lim l—rz i = lim 1—(0:— e + 1) = lim 1(?‘—5) =-3
Lot ordl el ot e+-12  1+1 +-12 1+l 2+-12"
So, we must have a=—3.

2) For zp = +3:
Left derivative:

T . 72 — 2 +3/2 t2__.-4 ‘ . N
f(f)+15:hm*/2 "L.+3/ :hml—‘l dotd 'ml—(I U 3):111111(2:—1):—%1

lim =1li -
pSyg B 3 -1 -3 =432 -3 z--12 -3 T=+3 2
1.5 b(x — 3
Right derivative: lim f@)+15 _ lim —— ) =b
FENPEEE A r—+3 T — 3
Therefore, we must have b=+1.
—3(x+1)+2,5 forz<-1 =3z —-0,5 forx< -1
2 2
We deduce  f(z) = %—23: for -1 <2 <3 = %—2:1: for -1 <z <3
+1(x=3)-1,5 forz>3 r—4,5 for . >3
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Exercise
a. If a cube with sides of 2 ¢cm increase by 1 cm/min, how does the volume increase?

b. If the area of a sphere with a radius of 10 cm increases by 5 cm2/min, how does the radius

increase?
Correction
a) The volume of the cube with side  is ¥ = 7%, We have ﬁ; ~ % (recall that
dv Av
_— = | —_— h
T hgn At) ence
Av  dv dv dx Ax
S0 00 B user 2D 2 3(2)2 1 = 12 o /min.
Ar S dE dn a8 om” /min

b) The area of a sphere with a radius of 10 cm ris § = d7r?,

As ds ds dr g Ar 5 ded Ar 5 5 1
— N — = — . — &™dTr.—— =9, L — = = = — cm/min.
A3 7 yPiy Al we deduce At 8y - 8010~ Ton em/min

Exercise

A breach opened in the sides of a tanker. Suppose that the petrol extends around the breach
according to a disc with a 2 m/s increasing radius. How fast does the surface of the oil slick-
disc increase when the radius is 60 m?

Correction

Let A be the area of the disc (in m2), r the radius of the disc (in m) and ¢ the time (in

seconds) elapsed since the accident.

We want to calculate the rate of increase of the polluted area with respect to time,A‘;1 ~ %
dA AA
remember " -— Jji;, — ).
( ﬁ'hﬁaﬂ
dA dA dr
We will use the relationship: E = E . E;
. C dr
The rate of increase of the radius is (given) T 2m/s.
. 2 .. . d
Consider the formula A = m1% Deriving with respect to r, we get: T =2rr
r
dA
So that, for r = 60 we’ll get ar = 120m.
r

We deduce the variation of the speed of the surface of the oil spill when the radius of the

slick is 60 m

AA dA
— R — = .2 754 m?/s.
; T 1207 . 2~ 754 m?/s

85



1.2.Derivatives of usual functions

(x") = px™] (tan(x))’' = ;_'::;LI'_I"I =1+ tan?(x)
(€%) = &~ (arcsin(x))’ = kﬁg

(a*)' = a*In(a) (arccos(x))' =— w.-"]]—.l'g

(In(x)) =1 (arctan(x))' = r

(sin(x))' = cos(x)

(sinh(x))" = cosh(x)

r [ - ) :
cos(x)) = —sin(x .
(cos(x)) (x) (cosh(x))" = sinh(x)

(tan(x))' = --n-]ﬂ.'x'. =1 +tan?(x)
Examples
1Y/ / ; -1
— = ."[:71 = —]_"]'1‘717]‘ = —:];‘72 = —.
1) (3:) ( ) 72
! -1
(2 1 1/2-1 1 ,.-1/2 _
x| =\x =zx =7 S
" alnzy/ ' In 1 1 et -1
3)a€R:(:c°):(e- “’):e“ TXoa—-=a—-2"=ax""",
T T

4) (Qw)f = (e 1“2)’ = et 2 In2=1n2.27

1.3.Calculation rules for derivatives

Derivable functions

functions are differentiable in their respective domains.

e Elementary functions such as polynomials, rational and irrational
functions, exponential, logarithmic, trigonometric and hyperbolic

Derivative of compound functions

e If [ and u are differentiable then the composite function

(fou)(x)= [f(u(r))y =u'(z) x f'(u(z)).

or (in Leibniz notation easier to remember)

d(fou)(z) _ dlf(u)] _df(u) du
dr dx du “dx’

z — (fou)(z) = f(u(z)) is differentiable on its domain and we have
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Examples: on domain of U, we have
1) Dy ={z€R : U(x)#0}: (U(lgy)) = (U Yz)) = -1U'(2)U2(z) = —Ulx)

'

2) Dy={reR : U(x) >0}k ( U(.’L‘))’ = (UW(:I;))’ = %U (r) U2 Y(z) = v (I) :

2 U(x)

3) Dy ={zeR : Ulx)>0} acR, (Uz)) =alU (z)Us(z).
4) Dy =R: (sinU(z)) = U'(z) cosU(x).
Examples (derivatives of common composite functions)

[ - A1—=1 7o )

\LFE™) = nlf()I" f (x) (tan(f(x))) = —4-—__“; _":,II:'I.I_ = 1+tan-(f(x))

[ 2 (X)) — of(X) £1 74 . . . J i)

(el =g _-F (x) |arcsin(f(x]))] = ﬁ

[HJI":J,": :I — a_i'-:'l'; |11I:f1]|f'[x] [arcccs[f(x]]l'lr - Fix) .

: : v 1-(fx))?
'(x) o
I-]l'l f[l:]:]l = J {arc[a]u:f:_rj] :Ir = ]—:_f'-.:llil'!
[sin(f( x,f]_. = f’l{x, cos( f(x)) (sinh(f(x)))" = f'(x) cosh(f(x))

(cos(f(x))) =— F'(x)sin(f(x)) (cosh(f(x)))" = f'(x)sinh(f(x))

Rules for calculating the derivative

e The sum, product and quotient, of differentiable functions is a
differentiable function over their domains of definition; and we
have for differentiable functions f, g and \ € R:

(f+9)=1+9 ., (fxg=fxg+ [xyg ,

(g)": [X9 = TX9 iy 4o

Oy =axf :

e If fand g are n-times differentiable then the product (fg) is
n-times differentiable and we have (Leibniz formula)

) n ny ny o .
(f-g) =f[}-g+(1)f[ 1}_g(1}+___+(kjft 0.0 4o fog®

mn
(r) —k k
which can be written [f ) 3) Z (k flnr). glh),
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Examples

For n = 1 we’ll get (f.9)=f .9+ .4,
forn = 2, we’ll get f.9)'=f"g+2f.9d+f.9" .
Examples

Compute the n-th derivatives of exp(z).(z? + 1) for all n > 0.
Putting f(z) = exp(z) we get  f'(z) =exp(z),  f"(z) = exp(z), ...
Denote g(z) = 2>+ 1then  ¢'(z)=2r, ¢"(z)=2and for k> 3, ¢ (z) = 0.
Applying Leibniz's formula, we’ll have
explz). (22 41) = (f.g)" = f g4 f0 0 g0 g f0=D g8 L g8 g (0B 0 sindefeos”
= exp. (1t +1) +expr.(22) +expa.(2)
= (1* +1)6" 4 206" + 26" = (2% + 20 4 3)¢"

Derivative of the reciprocal bijection

e If a bijection f : E — F is differentiable then its inverse bijection
[V F = E (defined by y = f~(z) « == f(y)) IS differentiable and we have

-1 - ! — d_y = L — 1 - 1
(@) =+ dr — f(y) ~ f(f2)
dy

Notice.:
It is easier to find the formula by differentiating [ (q(:t)) =zrwithg= f""':
' 1 1

el = = g/ olel) =1 = () =6) = s = e

2 FIRST-ORDER APPROXIMATION

2.1.Linearization - Differentiability

Definition: (differentiability)
If a function fdefined on an open interval [ C R admits in a

neighbourhood of a point ¥y € I an approximation of order 1 (or linear)
i.e., that there exists a linear map » € V,, — L(x) such as

f(x) = L(x) 4 o(x — xp);

then we say that fis differentiable at the point xy.
We also talk about linearization of the function f.

AB:remember that o(z — xp) = (v — x¢) €(z — xp) With ¢(z — z7) — 0.

I—X0
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Theorem: (differentiability equivalent to differentiability)

Let be [ a function defined on an open interval I C R and z € I.

fis derivable at zq i.e., f/(x) := flin% fl@o+ h})z — () exists if and only if
1—

[ is differentiable at 2y i.e., there is a linear mapx € V,, — L(x) such as
f(x) = f(xg) + L(x — x0) + o(x — x0).

We actually have L(x —xq) = f'(x0) (x — x9).

Indeed, the existence of the limit

f'(xq) := lim M — lim f(xo +h) — f(xo)

is equivalent to one of the
x—o T — X h—0 h

following two writings

f(x) = flzo) + f(zo) (x = w0) + oz —20) or  flzg+h)=flxe) x b+ f(zg) + ofh).

Theorem: (linearization or approximation of  * Cure

order 1)

If { is differentiable (differentiable) at
then we can approximate f(x) close to x(.by

Arbitrary
point

. . . . flxo) () =
a linear expression (apprommatlon Of A
order 1):
~ / To £

f(z) = f(xo) + ['(20) (w — o)
ATTENTION : Linearization depends on the point y Lo
at which the function is linearized.
For example, linearizing the function  f

r — f(z) =1+ z gives
Closeto iy = 0

f(@) = f(0) + f/(0) ( — 0) = 1 + 3 1////
Close to Tp = 3 |
fle)= fB)+ 3 (x—3)=2+1x 2 -1 0 1 2 3 4 x

Example. 1

Let f(z) = (1 +2)", we have f'(z) =n(1+2)""!, linearization f(z) ~ f(0) + f/(0) (z — 0)
, we deduce

(14+2)"~1+nzx pourz<<1
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Simple formula to remember. It makes possible to calculate approximations of
roots and powers of numbers close to unity. For examples:

V12 =(140.2)

(1.002)09 = (1 +0.002)1%° ~ 1 4100 (0.002) = 1.2 (with calculator: =
(1.002)10 = 1.22..)

W=

~1+ % (0.2) ~ 1.066... (with calculator: /1.2 = 1.062...)

Example.2

Let f(z) = sinx, linearization sin(x) = sin(0) + cos(0) (z — 0), we deduce

sin(x) @ pour x << 1

This is the linearization that is performed to solve the pendulum equation in
physics.

2.2.Line tangent to a point

The straight line which passes through the distinct
points (g, f(zo)) and (z, f(x)) has as slope
f@) = f(0)

Tr — Xy

coefficient

Taking the limit, we find that the slope coefficient
of the tangent is f'(x).
An equation of the tangent at the point (g, f(z0))

is then: Y= f,(xﬂ) (x —x0) + f(x).

Exercise

The trajectory of an airplane in the opposite figure has
2r+1

the equationy = . The aircraft fires a laser beam

along the tangent to its trajectory towards targets placed

on the x'Ox axis at abscissa 1, 2, 3 and 4.

a) Will target no 4 be hit if the player shoots when the
plane is at position (1, 3)? '

b) Determine the abscissa of the plane allowing to reach

the target no 2. " ‘ ? 9 ° :

Correction
a) Target no 4 will be hit if it is on the tangent to the curve at (1; 3).

o , 2.x—(2x+1).1 -1 L
The derivative Is y = = =7 and the tangent equation is

y=f(x-1)+3=—-x+4.
For x = 4 we have y = —4 + 4 = 0. Therefore target no. 4 will be affected.
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b) For target no. 2 to be hit, the tangent at (g, ?) of the aircraft trajectory must pass through

target no. 2; therefore, the couple (219) = (2:0) must verify the equation

. —1 229 + 1
y= ff('r[])(l: - IU) + f(I’U) ie. U= — (2 — :Eo) + 0 ,
) Zo
24 222 4+ x —1:&\/5
that is 0 = ——5— + =5 oragain 205+ 200—2=0, A'=5 1, = —
0 0

One can deduce the abscissa of the plane-position making possible to reach target no. 2. is

_ —1+5

xIp 5

3  HIGHER-ORDER APPROXIMATION

3.1.Limited Taylor-Young expansion

Definition: (Limited development)

(LE) to order n, at point a, if there are real numbers cy,cy, ..., ¢, Such
that for all x close enough to a we have:

flr)=cq+ea(r—a)+e(r- a)2 tey(r—a)l+ . +e(r-a)"+ o[(x —a)"]

We recall that o[(x — a)"] = [(z — a)"] e(z — a) with e(x — a) — 0.

r—ra

v Thetermcy+ci(v—a)+c(r—a)+c(r—a)+..+c (2 —a)" is called

the polynomial part of the LE.
v’ The termo|(x — a)"] is the rest of the LE.
v' The limited development (LE) if it exists is unique.

v' If the function [ is even (resp. odd) then the polynomial part of its
LE at 0 contains only monomials of even (resp. odd) degrees.

Let a € I and n € N. We say that a function f admits a limited expansion

Theorem: (Taylor-Young formula)

Let f be a function is of class C" on I and a € I. then for all x € I we
have:
'(a) "(a) £ (a)

) = Fa)+£(0) a2 o+ 5 ot =)ol (o

Taylor-Young polynomials.

The limited expansion of f(x) in the right-hand side of equality is called
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For n=1: we find the approximation of order 1 (linear):

f(z) ~ f(a) + f'(a) (z — a).
For n=2: we find the approximation of order 2 (quadratic):

o)~ 1)+ @) o0+ 52 o ap

Example

Let’s look for various approximations of f(z) = expz around the point a = 0

v' Approximation d’ordre 1 (linéaire) :

v' Approximation d’ordre 2 (quadratique) :
0

1
flr)~e+e (2 -0)+ e (z-07=1+2+=2

9l 2
v Approximation d’ordre 3 :
N ¢! ¢ 1y 1
flr) e+ (z-0)+ (:L 0 + (I 0)° —1-|-;1-+§'I +6; e v RIS -
Example
For f(z) =1In(l + ) and 1:---= we have: f(0) =0, f'(z) = o — F(0) =1,
i — ! _ "o 2 3 _
f'(x) = e = f(0)= -1, f"(z) = arop = f%(0) =2, hence

v' Linear approximation (of order 1) :

f(I) ~ O + 1 (‘]: —_ O) =7 y S fl,// ¥

V" Quadratic approximation (of order 2) : .
-1 9 1 9 ¥y=In(1l+ x)
flz) %0+1(;1:—0)+?(:c—0) =T 5
v' Approximation of order 3 : -
-1 2 2 U \E I 1_2
fle) =0+ 1(z-0)+ 21( U)+§(J-—U)—1+I—§I t: L
Nole (important):

The equation of the tangent at the point of abscissa then « is
y = f(a)+ f'(a) (x — a). The quadratic approximation (of order 2) makes it
possible to study the curvature of the curve of the function f

o)~ fla) + fa)(e-a) 4 DD -t = o) -
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So, on an interval 7 we have:
v T f f" < 0 then the curve of [ is below the tangent: concave function.

v T f f" > 0 then the curve of I is above the tangent: function convex.

The point where there is a change in curvature is called the inflection
point. To determine it analytically, it is necessary to solve the equation
f"(z) = Oand then search among the solutions for those where " changes
the sign.

5
¥
concave =0
1z
F7<0
| . #
4 3 2 < U 3
J=0 1
£20 2}
convexe

Theorem: (Error of the approximation)

If a function f is n + 1 differentiable and P, is its Taylor polynomial of
order n generated by f ata c I, if|f(”“)(:c)| is bounded over I by a real
Mi.e., |f"*V(z)| < M, thenVx € I:

Example
The linearization close to a = 0 of f(x) =sinz gives sin(x) =~ .

What is the precision of this approximation if |z| < 0.5 i.e., z € [-0.5,40.5]?

We have  max (@) = ﬁlgOX,I — sin(z)| = sin(0.5) we deduce
. (0.5)*
Vo€ [-0.5,405] : |f(z) - Pi(z)] = |sin(z) - 2| < 1 sin(0.5) < 0.06,
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4  LE AT THE ORIGIN OF USUAL FUNCTIONS

We have to retain the following LE at 0 of usual functions:

2 -3 o
expx=1+5+ 5L+ + -+ 5 +x"e(x)

2 4 2n
Chx:]_+"2'.—1+%++ §H!+IEH+IE|:I}

i3 x 2+l In+2
shx = 1I tTartE et Gnriy T X e(x)
2 1
cosx=1—F+ 57— +(— 1]n[-2njl_|_x2n le(x)
inx=2X_X 4 X 2n+2
sinx =5 —57+5—+ (1) (zn+1),+x e(x)
] 3 n
In(1+x)=x—% + % — - +(=1)"1X 4 x"¢(x)

a(tz 1_| r:t[cr 1)..{ag—n+1]}

n'|

(1+x)=14ax+E2Ix24... x4+ x"e(x)

1
14+ x

—1—x+x?—x3+- +(=1)"x" + x"e(x)

1 2 n n
1—:1+x+x +--4+x" +x"€(x)

Vi+x= 1+%—%x2+---+{—1]"‘1%x” + x"e(x)

Important remarks:

» The LE of cosh T is the even part of the DL of ¢Xp 2 (we retain the monomials of even
degree).

» The LE of Sinh  is the odd part of the DL of ¢Xp & (we retain only the odd degrees).

» The LE of COS X is the even part of the DL of ¢Xp by alternating the sign +and —.

» The LE SV T i the odd part of CXP & by alternating the signs +and —.
> For In(1 + x) there is no constant term, no factorial and the signs alternate.
4.1.LE of functions at any point

The function f admits a LE close to a pointx = ¢ if and only if the function
t — f(t + a) admits a LE close to 2 = 0,

Therefore, we reduce the problem to 0 by the change of variables t = = — a.
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Examples.
1. LE of f(x) =¢e" ata = 1.
We pose t = 2 — 1. If xis close to 1 then tis close to O.

We will look for a LE of et near { = ().

A A r-1)? (z-1° r-1)"
¢ =¢T = = e[l +t+= +3!+ 4= +o(t”)}—e[1+(1 1)-|-( i ) -I-( 3 ) -|-...-|-( o ) +ol(z-1)"]]
So close to a = 1 we get
r—17? (z-1)° Tz —1)"
e"::e[l-l—(x—l)-l—( 2,) +( 3 ) +._.+( n') + of(x — 1)"].

2. LE of g(z) = sinx close to @ = w/2. We pose t = — 7/2, we have
T—7/2 = t—=0.

sinz = sin(t + 7/2) = cos(t) = 1 — % 4+ % — (=1 (;; +o(t2H)
P L ) e (21§?) " 4 of( — /2]

3. LE of A(x) = In(1 + 3z) at a=1 to order 3.
Wesett=2—1,wehaver—1 < = 0.

t
In(1+3z)=In(1+3(t+1)) =In(4+3t) =In4(1 + SZ) =In4 +1In(1+ %)
We pose T:¥ wehave 1 =1 = t =0 < T = 0; we use

n(1+T)=T~-Z 4.+ (=1)" 1T 4 o(T).

3t T2 T'3 5
h(:r:):ln(l—}—S:I:):1n4+1n(1—|—z):1114—|—111(1+T):ln4+T——2 —|——3 + o(17)
3t ()" (%) 3t 30, 9.,
=lnd+ = - LM L o(S)Y ) =nd+ St =2 — P 3
w47 =gt ol(T)) =t - g ol
3 9 9 ,
=lnd+-(z-1)——=(2-10°+—(z -1 +o[(x - 1)%]..
w4t (=)= (0= 17+ @ = 1 +ole = 1)’

4.2.0perations on limited developments
Let fand g be two functions which admit LEs at O to order n:
flz)=c+ax+..+c,2"+o(a") = Pr+ o(x™),
g(z) =doy+dix+ ..+ d,z" +o(z") := P, + o(z"),
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Theorem: (Sum and product)

e The TAYLOR polynomial of order n generated for the sum f + g is
the polynomial sum Py + Py;

(f +g)($) - (CU + dO) + (Cl + dl)‘r + ..+ (Cn + dn) Ty + O(wn)

e The TAYLOR polynomial of order n generated for the product f.q is
the polynomial product Py x F, truncated to order n, i.e., that we
keep only the monomials of degree < n;

Example.

We have the LE of order 2:
cosz =1 — 1z + o(a?) and V1+z =14 32— 32>+ o(z?) then:

1 . . 1 1 . .
cos:f;+\/1+:c=[1—§$2+0(:L'2)]+[1+§:l;—g:c2+o(:cz)}

(1+1)+1 + ( L 1)2+(2) 2+1 i 2+ o(z?)
— —x+4(—= =) +o(z?) = —r— -2 4oz
2" 278 273

1 1 1
cosx V1+x = [1—§$2+0(x2)] X [1+ 2 —=2% 4+ o(x?)]

2 8
1 1 1 1 B
:1><[1+§x—§12}—5x2x1—|—0(:z?2)+o($2) :1+§x—§x2—|—0(12)

Theorem: (Composition)

e If g(0) = 0 then the composite function [ © g admits a LE of order n
at a=0 whose polynomial part is the truncated polynomial at order n
of the composite Pr[Fy(x)].

Examples:
1) Calculation of the LE of i(2) = sinln(1 + z) at 0 to order 3.

We put here f(u) = sinu and u = g(z) = In(1 + z). We have
(fog)x) = flg(x)] = f(u) = sinu =sinln(l +x)  and g(0) = 0.

The LEs: sinu=u— 5 u’+0(u®) and u=MIn(l+2)=2—-% + % +o(z%),
so w=[r—ia*+32% 40P =27 —2x527 +o(2?) =2 — 2® + o(a?)

and ©®=[z— 2%+ 1%+ 0(2?)] x [27 — 2® + o(z?)] = 2% + o(2?).
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Consequently

1 1 1 1
sinln(14+2) =sinu=u— —v* +o(’) = [z — = 2* + = 2% +o(z?)] — = [2° + o(2®)] + o(2?)

3! 2 3 6
1 1
=x—§:c2+a:c3+o(a:3)

2) Calculation of the LE of 1(x) = 1/c0s & near 0 to order 4.
We know the LEs: cosz =1 — .27 + 5 2* + o(u!) and
VItu=1+43u—3u’+o(z?)
We put f(u) = /u and g(z) =1

h(z) = (fog)(x) = flg(z)]

+u = cos(z). We have

f(l+u)=+1+u and ¢(0)=0,

u=cosz—1=[1-g2*+fa"+ou")]—1=—12"+ L 2" +o(u')
u? = [—32% + S 2 + o(u")]? = T2t + o(z?).
We deduce
1 1 2 4 1 1 2 1 4 4 11 4 4 4
veosr=vVi+tu=14+-u—-u"+o") = 1+ -[-z2*+=2"+o(u')] — = [-2" +o(z")] + o(z")
2 8 2" 2 24 84
1 | 1 |
=1*1$2+ﬁ$4*§$4+O($4)=1*1£2*%$4+0(£L‘4)

Theorem: (Division)

e By carrying out the division according to the increasing powers of
Pyby P, to the order n we will obtain the writing:

Pf = Pg Q"—anrlR with deg Q < n.
Then Q is the polynomial part of the LE at O to order n of SEI;
o
Example
T2 3 2
Find the LE of % to order 2442 I+=
xr
2. 2 + 222 2+ — 222
xr— 2%+ 223
From the Euclidian division we T+ 2°
deduce on? + o8
2 )
et =2+ — 227+ o(x?) —ox? — 2t
14 22
3 4 22t
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4.3.Applications of LEs

4.3.1. Limit calculations:

. cosx — 1 '
1) Calculate lim ————_ Let's use the LEs:
z—0 e® — 1

2 3 "

T __ L ny .
€ —1+$+j+§+m+a+0($ ),
2 'TZn " )
cosr=1——+ ... +(-1)"—+ ...+ — +o(z"").
2! ( )(271)! n! (=)
cosz —1 _ 1— 327 +o0(z?) — 1 _ —3 2% + o(z?) _ —2*+o(a?)
et —1 l+z—31a2+o(x?) -1 z—1x240(2?) 2x—22+o0(x?)
g 2r — x°
EENU T N
>
. cosx —1 . 1
We deduce lim ———— = lim ——z + o(z) = 0.
z—=0 e* — 1 x>0 2
o In(l+2) —tanz + tsin®x T
2) Calculate lim d+2) —2 =1 We recall:
z—0 322 sin’x g(x)
t2 "
In(l4+z)=z- 5 tot (=)=t o(z") ;
n
3 M+
T T
sinz=1r——+...+(-1)" + ozt
iz = = gr et (S o)
23
2 2n . r— — 4+ ...
— 1 _ $_ _1\n &z 2ny. _ smx 3!
cose =1 2!—|—...-|—( D (2n)!+o($ )’tanx_cosx x?
11— —+..
2!
r— 32t + 1—1a?
x—%x3 x+%x3+...
1.3
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We deduce

1
flz) :=In(l+2z)—tanz + isin2 T

1 1, 1 1 1 1
[n—§T2+3:t“3’ 41 4oz )]—[T-i-?)iz: + o(x )]-l—ﬁ[:z:—gn + o(z")]?
1 1 ) 1
=—§$2—1$4+o($4)+§[x 213:{: + o(x")]
1 1 1 1
=—at——2' 4’ — -t +oa?) = -

5 4
2" T Tt TG pd el

12

1
g(z) = 32% sin’x = 3a? [z — 3 2 + o(zh))?

1
=327 [2* -2 3l 2? +o(z)] = 32' +o(z?) .

In(1+2z)—tanz + isin’z — Sty 5
Then lim ( ) 2 = lim —2 o) =

20 312 sinr =0 3at + o(a?) 36

NB: by calculating the LE at a lower order, we could not have concluded,

o 4
because we would have obtained lim f(z) = lin o(x”)

which remains an
a—0 g(r) ) o(x?)

indeterminate form.
4.3.2. Equivalences:

1) Give simple equivalents close to 0 for the following functions:

a) 2¢” — /1 + 4z — V1 + 627 b) (cos )" — (cos x)'™ne,

a) 2¢* — /1 +4x — 1+ 622 := f(z). We have the LEs:

_q 3 Ik

er=ltut ottt +()anc1

(I+2)*=1+4az+ ( T+ —( o) 3y 4 a(afl)'?'f!a*nm 7" + o(z"),
then for a =

5

(a)r=yITe=14te+ 02 L 08 33 () IO gy )

To order 3 we'll have (1+2)7 =T +o =141 -1+ La% 4 +o(a?).
We deduce

flz)=[2+22+2%+ $—3 +o(z)) — 1+ 1(4:1:) 1 (42) + L (42)® + o(z®)] — [1 + %(&rg) + o(z%)]

8 16
5 a3 16 3 ., 6 . 73 . ) 11 . i
=+ + % + gxg — 1—63:3 — 5:1:2 +o(2?) = +% —4a® +o(z?) = 3 2+ o(2?)
So close to 0 we have —V1+4dx — V1+6372N——33
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b) g(z) := (cosx)¥"* — (cosx)"™™* = exp[sinz Incosx] — expltanz Incos z].

T3 r_?n+l

i e — _1\n w2n+1
We know the LEs: sinz =z T + .o+ 1)’—(271}'_1)!4—0(1;’ )
2 2n .
T : . sin
ST=1——+ .. +(=1)" 20): tang = oL = g 4 Lgd 4 ofa!
Cos & T +( )(zn)!+o(m ); tanx oy = C st ola)

t? $3 "
hl(l—a:):$+%x2+...+%x”+o($”)ande”:1+x+§+§+...+m+o(:c”)
We deduce
g(z) = exp|(sinz) In (cosz)] — exp[(tanz) In (cosz)]

L3 3 2’ 3 1 4 3 z? 3
:exp[(a:—gar +o(z%)) ln(l—a—l—o(rﬁ ))}—exp[(m—kgm‘ +o(z%)) ln(l—§+o(m‘))]
L. 21t 1. S .
= exp [(z - g.r‘} +0(z%)) (% 3 %]2 +o(z))] —exp [ (2 + g:ﬁ‘g +o(z%)) (% ts %}2 +0(2%))]
TPy Ty Ty T TR T T
10 120 125 120
=14+t -l - — - - — b
U R I R R W IR
_ 315 5y 1 ) b
=557 +o(z°) = 77 + o(z”)
; 1.
So close to 0 we have (cos @)™ — (cos )" ™™™ ~ VR
2) Give an equivalent close to +oc of Va2 + 1 — 2va3 + o + Vat + 22,

a—1)(a—2)
2!

Reminder: (1+ 1) = 1+ az + 21 2 1 o 2 4 . dlollomntl) gn g g gm)

then close to 0 we have

11
(I+a)i=Vite=1+ta+ 2('22! 1)$2+0($2):1+%x—ﬁm2+o(azz)

1l
L+ do+ 30002 4 0(a?) = 1+ du — 2522 + ofa?)

ol

(1+z)

11 ‘
1-|-i37+4(42—!])3;2-|-0(3:2)=1+ix—ﬁ$2+o($g)

(1-|-$)%

1
Noticing that r -+ 400 <= — — 0, we deduce that close to +oc we have
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Adding these results, we get

fla) = Va2 +1-2Vad 4+ 2+ V't + 22
11 11

1 21 21 1 11 31 1
- Y (i | DY ) Vo M S R Gl i Y
[I-I_?:E 8373+0(a:4)]+[ v 3$+93:3+0{x4)]+{$+4:c 32 23 O(:c‘l)]
1 1+ (1)
12z Ox
3 33 4/ 3 11
So close to +x Va?+1-2Vad + o+ Val + x ~ 12 7

4.3.3. Others:

Find the tangent of the graph, at point of abscissa @ = 1/2, of a function f defined by

f(z) = ' — 22% + 1; and specify the position of the graph with respect to the tangent

Let's use the LE of f(z) at point a = 5. f'(z) = 42® — 627, f”(x) = 122* — 12x; then

@) = 10270212 T 1 2ol 1 /20 = a1/ D12 ol(a-1/2)7
We deduce the equation of the tangent y = % — (x—1/2).

The position of the graph with respect to the tangent depends on the sign of

£() =y = =3(e = 1/22 +of(z ~ 1/2)"

which is negative; this means that the graph is below the tangent.

5  OPTIMIZATION (LOCATION AND NATURE OF EXTREMA)

Definitions
Let [ : |a,b] = R be a function. We say that

v fis bounded in [a,b] if there exists a real M > 0 such as

Vo € [a,b] : |f(x)] <M (ie —M < f(z) <+M);

v’ [ admits a global maximum (vesp. minimum) at ¢ € |a, b| if
Vo € la,b] © f(z) < f(c) (resp. ¥V € [a,b] : f(x) > f(c));

v [ admits at ¢ € [a, b} a local (or relative) maximum (resp.

minimum) if there exists a neighbourhood V 0is of ¢ such that

Vo € Vois(e) : f(x) < f(e) TesP-Va e Vois(c) : f(z) > f(c).
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N maximum global

minimums locaux maximums locaux

Critical (or stationary) point

Let f : [a,b] — R be a differentiable function at ¢ € [a,b).
If f'(¢) = 0 then c is called critical point (or stationary point).

Proposition (extremum implies critical point)

Let f : [a,b] = R be a differentiable function in ¢ € [a, b].
If [ has a local extremum at c, then cis a critical point (f'(c) = 0).

ANB: If {' = () at a point, then there are two possibilities for this point
v Itis an extremum of the function or

v It is an inflection point with horizontal tangent.

. ' |
\ ..J"'r 7 \ , J y
I A |
J— / "'I"t |Ill 1 I Ii
nunimum MAXITIHT points d'inflexion 3 tangente
(extrema) horizontale (chaise)

Important: The extrema of a function are to be found among the critical
(stationary) points.

Proposition (second derivative and classification of extrema)

Let f : [a,b] = R be a differentiable function at a critical point
c €la,b|

(f' (c) = 0) then:
1) If f"(¢) < O (concave curve), the function admits a local maximum at c,

2) If f"(¢) > 0 (convex curve), the function admits a local minimum at c.
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2 :
concave JS=0
i ~

Example
Find the extrema of the function f), with a real-parameter \, defined by

NH(x) =2+ x

The extrema of the function f) are to be found among the critical points. The

derivative is f}(x) = 32% + . If cis a local extremum, then we'll have
file)=3+X=0

v IfA>0thenVx € R : f{(z) > 0, there are no critical points and so no
extremums.

v 1f A =0 then f}(z) = 2 =0 <= x = (. The second derivative f}(r) = 6
vanishes at x = 0 and changes sign. Therefore z = () is not an extremum but
a point of inflection (change of curvature).

v If A < O then fi(z) = 2* — |\| =0 <= x = £+/|\|. There are two critical
points z = —/|\| and = = ++/|\|. We have f}(z) = 6.

+  fl(—/|A]) <0 then x = —+/|]| is a local maximum

£ fl(++/|A\]) > 0 then z = ++/|]A| is a local minimum.

r -/

/ L/

A=0 A=0 f A<0O

f

/
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6 THEOREMS RELATED TO DIFFERENTIABLE FUNCTIONS

Théoreme de Rolle

Let [ : [a,b] = R be a function such that: A

1. f is continuous on [a; b] v i
2. f is differentiable on Ja; b[ L 1 e g L
3. f(a) = f(b) "

then it exists ¢ €|a;b[ such that f'(c) =0

(horizontal tangent).

Théoréme des accroissements finis

Let f : |a,b] = R be a function such that:

1. fis continuous on [a; b] fx)
2. f is differentiable on Ja; b[
then it exists ¢ €]a; b] such that:

f(bl)) : i(a’) _ fl(c). f

Corollary

Let f : [a,b] — R be a continuous function on [a, b] and differentiable
on Ja, bl.

1. Vz €labl: f'(z) > 0(f'(z) >0) = fis (strictly) increasing;
2. Vx€la,bl: fl(x) <0 (f’(m) < 0) = fis decreasing (sirictly);

3. Va €la,b[: f'(r) =0 = fis constant.

Cauchy's theorem "' generalized finite increments''.

Let f and g be two continuous functions on |a, b], differentiable on |a, b|.

Suppose that g(a) # g(b) and that ¢ does not vanish on |a,b|; then
there exists ¢ €la; b] such that:

f) = fla) _ f'(c)
b—a g'(c)’
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[

Hospital Rule (IF 0, )

Let f and g be two functions such that:
Llim f(z) = lim g(2) = 0,
2. f and g are differentiable nearby a € R,

3. the derived ¢’ does not vanish close to a,
/

4. };l—rﬂ 7 (@) exists.
/
Then lim f(2) = lim f(=)

e g(x)  woegl(z)

Important Nole

The rule is also valid if @ = +00, or if lim f(z) = £00 and lim g(z) = £oc.
Tr—ra r—a

Examples

2
1. Calculate lim In(z” + 2 — 1)
z—1 n(xr)

. We have an indeterminate form g.

Let's use the Hospital’s rule: set N(z) = In(2* + 2 — 1) and D(z) = In(z).

2x+1
lim N'(z) :lim'rzi#_l :limﬂ X l:3
z—1 D’(_L) r—1 % z—1 2 +ax—1 T
2 P
We deduce lim In(z”+2—1) = 3.

1 In(x)

xT

2. Calculate the limit lim -

. We apply the HOSPITAL theorem

x—0 xT
e’ — 1 e’
lim =lim— =1
x—0 x z—0 1
e —e "t —2x
3. Calculate the limit lim -
x—0 Tr—smaex
Let's pose N(z) =¢* —e " — 2z and D(z) =z —sinz.
. N'(z) .
N(z)=e¢"4+e*-2—-0 and D'(x)=1-cosz— 0. lim remains IF.
z—0 D"(”L‘)

105



N"(z) = ¢ — ™ =0 d D'(z)=sinz—0 lig (2
(x)=¢"—e* — an (r) =sinxz — 0. lm D(x)

n
N"(z)=¢e"+e* —2 and D"(z)=cosz — 1. lim N"(w) =
7—0 DH!(:I:)

remains IF.

T —T
et —e Tt =22
We deduce lim , = 2.
x—0 X — SsInr

Exercise

11
Calculate the following limits: 1) lim (z —7/2) tanz  2) lim (— - )

) x=0 \xr  sinx

1 ( 1 ) o lim sin(7 x)
)3:1_13 Inx (z—1)2 )o:—>1 nz
Correction
. . r—7/2 . N(x)
1) Iim (x —7/2) tanz = 1 —— = ] .
) Jim o —m/2) tanx = lim “wosz—:= im0
sin
AT/
lim A T) lim = lim = lim sinz =0
a—n/2 D'(x) a=n/2 womjz —1 z—7)2
sin® x
lim (z —7/2) tanz =0
We conclude w—m/2
1 1 i — N{(:
2) lim (— — — ) = lim w = lim (=)
250 \x  sinax =0 xsine x50 D(x)
N'(z s — 1
lim (z) = lim — cos T ) 1 1
2—0 D’(:r:) r—08Inx + T cosT lim (— — = ) =0
SO x—0 T S111 0
N o
lim (@ = lim ST - =0
=0 D"(z)  2—0cosx +cosx —x sinx
3) lim (L - ) = lim —(r — 1) —Inz = lim —V(T)
eI \lnz  (z—1)? =1 (x—1)2Inz  a=1 D(x) 1 1
lim ( — ) =00
N'(x) 20 —1)-1 soe~i\Inz (2 —1)7
lim =1 s =0
z—1 D’(CC) z—1 2(,1« 1) Inz + (z=1)
sin(m Nz
1) lim > (Tr ) = lim ()
T—1 nr z—1 D(,,[) SiIl(ﬂ' .GC)
so llII% s —T
" N'(z) T cos(mx) e
1m = —T
x—1 D’(I) z—1 1
&I
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7 NUMERICAL METHOD FOR FINDING ZEROS
(NEWTON’S METHOD):

We have already seen in the previous chapter the method of bisection or
dichotomy for the approximate calculation of the zeros of a continuous

function. This method still works but is not very fast.

We present here a faster method, Newton's method.

The principle is as follows: given [ : R — R a function of class C* and « a

single zero of f, i.e., f(a) = 0 and f'(a) # 0.

knowing a value a1 close to a, we calculate z; by taking the abscissa of
the intersection of x-axis with the tangent to the graph of f passing

through the point (v, f(xy)):

!
y=[fz)(@—zp) + flas) ol
_0 S T =T — ; _
y= f'(x)
We thus define the recurrent sequence Va /
xo donnée s
f(zy) /|
f (Lk) X »';'I. i
A — >
As a stopping criterion, we can choose to stop | x4 Ve X
when the iterates are close to each other or i x/’
| i
when the value taken by the function is p i /4
sufficiently close to zero. - __J../
Example (approximate calculation of V2)
We have 2> — 2 =0 <= z = +/2. Let's find the zero of the function
f(x) = 2® — 2 in the interval [0, 2] with a precision of 107°.
2
x xry— 2
Using Excel, we defined zy = 1 and xp. = 1 — f,( k) = g — £
f (wk)
k Xk | xk - racine(2) |
0 1,000000 0,414214
1 1,500000 0,085786
2 1,416667 0,002453
3 1,414216 0,000002
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Exercise

Let's look for a zero of the function f(z) = cosz — x°,

Correction

f(0) =1 and f(1) & —0.46, f being continuous we deduce that the zero is between 0 and 1.

Let us take as starting value 5 = 0.5. The derivative is f/(x) = —sinz — 322,
g
(x _0.5° %
N fr. ﬂ]=ﬂ_5_ cr:rs[ﬂ.ﬁ_ll 0.5 _=111214
f'(x) —sin(0.5)-3-0.5
(x ~1.11214°
x1=x,—g=1_11214— cj:-s[1_11214_1 1.11214 _=0.90967
flx) —sin(1.11214)-3-1.11214
(x - 3
Sp— f,' ) = 0 90967 08 (0-90967)~0.90967 =086626
f(xa) —sin(0.90967 )—3-0.90967 \".
(x;) - ; '
N f,' 2 0 86626 —Cc0s(0-86626)-0.86626 _ oo, \
flx3) —sin(0.86626 )—3-0.86626 '|
(x - !
— f; 2 0 86547 —C05(0.-86547)~0.86547 =086547 _ ;
flxy) —sin (0.86547 )—3-0.86547 fx)=cos(x)-x
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To remember :

6th chap. : Usual Functions

1 POWER FUNCTIONS, SECOND DEGREE POLYNOMIAL

1.1.Power functions

The power function is defined on R by
VeeR : f(z)=2", neN

e It is continuous and indefinitely differentiable, we have:
(z") =na"'  And (z")" =n(n-—1)2"2 ..

e The variation of " depends on the parity of n € N*.

e

=xlp

-

y

e

—2 F=
n=2p, peH n=2p+1,pc N

e Whenn € N* is even the curve is a parabola symmetric with respect

to the axis (y'oy).
The axis (x'ox) is a horizontal tangent: Functionz — 2°? is even and

has an extremum.

e Whenn € N'is odd the curve is symmetrical with respect to the
origin.
The axis (x'ox) is a horizontal tangent which crosses the curve:
Functionz — z?’*! is odd and has an inflection point at the center

of the symmetry (0,0).

i.e. sequence (;];’”) is decreasing and tends to 0.

i.e. sequence ( ;17’”) is increasing and tends towards+00.

rel0l= 1>z>2">2">.. =0

TE|l,too]= l<z<r?!<s’<.. =+
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Exercise

Each of the following six parabolas is the
graphical representation of a function of the

type f(z) = ax?. Determine, for each of

them, the value of the real a.

Correction
To determine a, it suffices to fix a point ]\/f(it‘, f(fb‘))of the curve and replace its

coordinates in f(:l?) = ax’.

HM(—4,4) = a=1 M (-2,4) = a=1,
3)M(1,3) = a =3, WM (—4,—4) —> a = —1,
5) inverse of C2: a=—1, 6) inverse of C3: a = —3.

1.2.Quadratic polynomial function

The quadratic polynomial function is defined on R by

VeeR : f(z)=ax?+br+c, a#0.

Canonical form: Let be a.b.c € R, o # 0 and put A = b — dac, Yz € R, we have:

T i2 T a

o= ool b ] ofs - o

2a
b.o b —dac
=al(e+ 50" - |

b A
=o(e+5) -1z
A b2
We deduce y-‘—E:CL(:E-I—%).

Note that, by making a translation of the reference (O, ? ?
(O, 7, 7)) with O'(—L, -2,

2a’

) we get a new reference
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This corresponds to the change of variable

hll
¥ =z+ b \ A
2a \ Il."ll 5
/ + A '\
1 _— —_—
/=y + —l ;/
then the equation of the curve becomes simpler: _ e/
yr —a CCJQ ' .
So, one easily deduce the curve of f. 0’
Nefice : We can see that the curve of y __
x— ax?+br + ¢ \
is the translated of that of known curve of ‘ ﬁ\ x,f;f
\ \ -’a\\ ) 5.".!
T — ar? \ \ e Y
o \\\_ &/’/ —b/2a \\\fr .
with a translation vector i = b/2a . oz x
—A/4a e o !

Exercise
Plot in the same Cartesian plane the graph of the functions defined by

f(x) =22 g)=(x+2)2% h(z)=(x+2)* -5, k(z) =2+ 6+ 10.
Correction

r — f(x) = 2% parabola (Pf).

r — g(x) = (x + 2)% parabola (Pg)= translated 2 left
units of (Pf).

x — h(z) = (xz + 2)? — 5: parabola (Ph) = translated 5
units down from (Pg).

e k(z)=2*+62+10= (2" +2x 3z +3) +1=(z+3)* + 1t

parabola (Pk) =translated from vectorv (:;’)of (Pf). A4

Netice: We can deduct from the curve of 2 — ax? 4 bx + ¢ the existence of the
roots and the sign of the polynomial az? + bz + c. We can also see the
intervals of monotony as well as the extremums.




1.3.Sign of the 2nd degree polynomial

We consider the discriminantA = b2 — 4ac.

b
LItA = 0: (HL’Q + bﬁC —+ C admits a double root ¥1 = L2 = _%.
b
x —00 3, +00
ax® +bx + ¢ (+a) sign | (+a) sign

2. 1fA>0:ax® + bx + ¢ (a # 0) has two distinct roots:
,  —b—VA ,  —b+vVA
¥ = ———— and = —
2a 2a
Noting z; = min(2’, z") and x5 = max(z',2”) we have
T — 00 X1 T2 Uy an
ax® +br +c (+a) sign ‘ sign of (-a) ‘ (+a) sign

3. 1A <0:ax®+ bx + ¢ (a # 0) does not admit real roots.
x — 00 Oy an
ax? + bx + ¢ (+a) sign

Netice: when A > () we have ax? + bz + ¢ = a(x — x1)(x — 22) and

Exercise

b c
T+ T = —— y Tl X Ty = —.
a a

Find all the solutions in R of the following inequalities:

Dz — 4]z —5>0 2)4 — 2% — |3 —z| >z
Correction:
1)
T -0 0 +00
2 — 4]z -5>0 2?2 +4x—-5>0 2 —42-5>0
A = (4)2 = 4(1)(=5) = 36, A = (=4)2 — 4(1)(=5) = 36,
analysis ,
y T, = _gﬂ)_b —_5, Tg= 7’12+6 =1 T = —(2—(41)) 6 _ 1, @y = % =5
Solutions by (1= 00, =5[U]1, +00[) ] = o0, 0] (1= o0, =1[U]5, +00[ )]0, +o0]
intervals Sy =] — o0, —5] Sy =15, +00]
Solutions S=5US5; =] — o0, —5[UJ5, +00]
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2)Let us first simpliy the expression |4 — x2| — 83—z >

x — o0

—2

+2

4 — 22|

4 — 22

—4 4 22

4 — 22

4 2

—|3 -]

3—x

33—

3—x

-3+

4—224+3—-2>x

— 4422 +3 -z >x

41— 4+3—-2>x

4—22—-34+2x>x

inequality pe., ie., Pe., ie,
22 =2r47>0 | 2?2=20—1>0 | —2?—224+7>0 | =2 +1>0
We will distinguish the difierent cases to solve the inequality:
i) Ii @ €] — 00, —2yp, inequalily is —a? =20 4+7>0,
A= (=22 —4(-1)(7) =32, 21 =1 —-2v2, 25 =1+ 2V2.
x —00 —2 1—2v2 +00
—2? =2 +7 -
Solutions No solutions
ii) Whether © €] — 2, +2] ), inequalily is a2 =22 —1>0.
A=(-2?2-4)(-1)=8 21 =1—-v2 1y =14+2.
T —2 1 -2 2 +00
2 -2z —1 +
Solutions S;=]—2,1—+2] No solutions
iii) Whether €12, 3] , inequalily is —a? =20+ 7> 0,
A= (=22 —4(=1)(7) =32, 21 =1 —2v2, 25 =1+ 2V2.
x 1—2v2 2 3 1+2v2
—x?—2x 47 +
Solutions Sy =]2,3
iv)Whether €]3, 400, inequalily i—e® + 1> 00 =11 =1
T -1 1 3 +00
—2?+1 - -
Solutions No solutions
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We deduce the set of solutions of |4 — $2| — \3 — :L"| > s
S =5US, =] —2,1—+2[U]2,3].

2 RATIONAL FUNCTIONS

The inverse function of power is defined on R by

1
Vz e R : f(m):E,nEN*_

o It is continuous and indefinitely differentiable on D¢, we have:

( 1 )f — (I—n)f — —n x—n—l — I;_Jrril

e

()" = Gt)' = =n (@7 = (=1 n(n 4 1) =2 = S

:L.TI

(IL”)W _ (=D? 71irii;)(n+2)

e Its graph is a hyperbola equilateral having the axes as asymptotes.

e The variation of x" depends on the parity of n € N*, Ifn =2k | k € N*
then x — x" decreasing on | — oo, 0) and growing on (0, +o0].

We deduce by inverting: 0 <a <b — é > %.

Y = T2RT1

Exercise

Find all the solutions in R of the following inequality:
1 1

:l;—|—2_:1;—2

<1 .
Jr4—1‘2

Correction
Note { the inequality, then [ is defined if and only if £ € R\ {—2,+2} in this case we have
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[ e T —2 r+2  rt—4 1
-4 x2—4 22—-4 22-4
- <$2_5
2—4 " p?2—4
— $2_1>0
2 —4
T oo -2 -1 +1 +00
2 -1 + + _ +
2 —4 + — — —
22— 1
- t+ o + o

We deduce the set of solutions of I :

3 IRRATIONAL FUNCTIONS

S =] — o0, —2[U] — 1, +1[U]2, 4+00].

e In|0,+oc|we have:

e Herreciprocal is the n-th root function denoted {/_

y=Jr <= x=y"
This remains truein R when n = 2k + 1, k € N*,

Ifn=2, ke N*[respn=2k+1, keN] functiont = z" . n>2is
bijective from [0,+[ to [0,4+x] [resp. from R to R].

Note the tangent to the origin. r \/I is not

differentiable at 0. Why?

7+

A/
=i

5 4 3 2 1

Important:

Exercise

e If nisodd then Vit =ux
e If niseven then vt = |x|
1) for real a and b solve a®> = b* |, a®* =b* ,\Ja=1b, Va=D.




2) for real a and b complete the following implications a <b = a’ 7 b, a7 b,
Correction

1) for a and b real, we have:
> a? =0 = - =(a-blat+b)=0 <= a=bVa=-—b,
> =0 = Vad=VP <= a=0b,
b>0
> Va=b — {a;bQ’
> Va=b < a="0b,

2) for a and b real, we have:
a2 > b0 sia<bh<0

9 5 . because the function £ — 2 is decreasing for v < () and
a* < b si0<a<b

a<b:>{

increasing for z > 0.
a<b =, a® <b®  because the function T — z%is increasing on.] — 00, +00].
Exercise

solve in R: HW2r+21=3x -1 , 2Wr+T7=1x+1.

Correction

D 3r—1>0 x €], +oo
Dv2r 421 =30 -1 { 2 21=(3x—1)2 {93:28$20:0’

A=1T84,21 =2, zy = —F ¢]5,+00[. So T =2 is the unique solution of the equation.

Wr+T=2+1 <= 2+T=(x+1P=0+3+31r+1 &= 2*+3* + 22 -6=0.

Note that T = 1 is solution of the equation, Euclidean division by ( — 1) deal to
B4+ 302 420 —6=(x—1)(2* +42+6) =0,

A = -8 < 0,50z = 1is the unique solution of the equation.

Exercise

solve in R: Wi+ <l+az 2)V142?2 <1+

Correction
1) The function ¢ — t* being increasing we have

Vi+d<l4+r <= 1+ <(1+2)=14+3r+32*+2° < 3*+3r=3z(z+1) >0,
we deduce 302 +32 >0 < 1€]—00,-1U0,+00].

2) The function { — t? being increasing on [0, +00[ we obtain

I+z>0
< 2 < p
D<VIt+ai<le {1+J;2<(1+5L‘)2:l+2£+w2

T €] —1,+00] ’
26 >0
hence the set of solutions of the inequality is S =10, 4o0].

Exercise
Let f be the function defined by  f(z) = V22 + 62 +8 — Va2 — 1.
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Give its definition set D and study the sign of f(x) for © € Dy,

Correction
22 +62+8>0
2 —1>0
P+ 060 +8:A =401 =—4,29=—2then 1’ +62+8>0 < 1€ 8 =] — 00, ~4| U[-2, +0].
On the other hand, 1°-1>0 < 1€ 8 :=] - o0, ~1]U[+1,+00].
We deduce the definition set of the inequality:
Df = 51 M5, :] — 00, —4] U [—21 —1} U [1, —I—OC[

For € D}, multiplying and dividing by the conjugate we get

f(m):(3:'2+6f17+8)—(:r2—1)= 6 + 9 .

Va2 +6z+8+ Va2 —1 Va2 +6x+84+Va?2—1

The denominator being positive, the sign of f(z) is the same as 62 + 9InD;. We deduce:

1)z € Dy <:>{

flx)=0 <= z = —g;

f(x) <0 <= = e}—oo:—dl]u[—z,—g;
flx)=0 < z €| — g, —1]JU[1, +ocl.
Exercise
solvein R: 1)y/a+ 1 — vz —2>3, 2)%> .

Directions

First find the domain of definition. 1) Leave a single radical to the left of the inequality
then square to get rid of a radical. For the second you can do the same or multiply and
divide by the conjugate expression then study the sign.

2) Study separately the signs of the numerator and the denominator; summarize in a table
and deduce the sign of the fraction.

3) Get rid of the radical by an equivalence; we will obtain a system of inequalities to solve
separately then consider the intersection. Pay attention to the absolute value which

requires a separation of cases.

3.1.Rational exponent power

Definition:
We can extend the power function to n = § , pEZ,qe N*:

P
xd = /1P and z°:=1.

Especially x =z and ¥Yn>2 : /v= T,
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4  CIRCULAR FUNCTIONS

To correctly handle circular sine functions, cosine tangent... it is
imperative to know how to work with the trigonometric circle (to simplify,
it will be noted C?). It is the circle cantered at the origin of the reference

(orthonormal) and of radius the unit of the reference.

Consider the point A(1,0) which will be origin for the arcs of C.

Fora € R we associate a point M(a) € Cr such as mes(AOM) = a.

«
E T'
T cos o= OH
K i /
_________ | gin o =0k
I Ok —
o i H' A tan o=——= AT
n EH
cuTo:=:H=F
CIE
sinfo+ coseo = 1

Cercle trigonométrique : OM=1

From the trigonometric circle we can see the following for any = € R

4.1.Sine function:

Definition and properties:

e SINZ js the ordinate of the point M(x) € Cr;

o SINnZ is increasing on(—%5, +%);

e 2m—periodicali.e. VreR : sin(z+k27) =sinz , k € Z;

e SINZ is bounded: VreR : —1<sinz <+1,

e sin0=sinmT =0, cosf =1, cos(—3)=—1.

e I —sSIDX is continuous and differentiable onR:
(sinx)’ = cos .
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.Cosine function:

Definition and properties:

e COSZ is the abscissa of the point M(z) € Crp;

e COSX isdecreasing on (0, );

o 2m—periodical i.e. VreR : cos(x+k2m)=cosz, k €Z;

e COSZTis bounded VreR : —1<cosz<+1.

e cosO=1, cosm = —1, cos 5 = cos(—%) = 0.

e T — COSYX js continuous and differentiable on R:
(cosz) = —sin .

¢ Y =sin(x]

e The Pythagorean theorem shows that

Vr € R : cos?z 4 sin?

T =1.
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Exercise
The evolution of the population P of deer is modelled by the function:
P(t) = 4000 + 500 sin(27t — 7/2)
where t is measured in years.
a. What is the period of the function P(t)?
b. When in the year is the population at its peak? What is the population at that time?
vs. Is there a minimum? If yes, when?
Correction
P(t+T)=P(t), Vt c R < sin(2nt + 27T — 7/2) = sin(2nt — 7/2)
a. Let T denote the period: = 2mt 4 27T —7/2 =27t — /2 + 27
= T=1
b. P'(t) = 4000 + 500 sin(27t — 7/2) = 500 cos(27t — 7/2)
Pt)=0 < 2nt—7/2 =7/242kr vV 2mt—7/2=—71/242%7 = t=1/24k V t=1+k.

0 1/2 1 3/2
P'(1) + — +

the population peaks in the middle of each year: P(1/2) = 4000 + 500 sin(7/2) = 4500.

Note: a minimum is reached at the beginning of each year, i.e.,

P(1) = 4000 + 500 sin(37/2) = 3500.

4.3.Tangent, cotangent function:

Definition and properties(tangent):
sin @ =
., tanxz:= x%w,kez |
) 2 | 31
CcOS T I ;):
e Itisis continuous and differentiable on D; / : |
| T |
1 | s
(tana?)fzi. H 2 ‘fi
1+ 22 / | |
o tanz jsincreasing on (—3,+%); _/_M T ﬂé'E n
e T —periodical i.e. _I/_Ig Vi | Ig/ )
| |
Vo € Dy @ tan(zx + k) = tan(z) , k € Z; VA
. / I
. tanz is not bounded: 1>1m tanr = —o0 i [ i /
Ty | / 31 l (I
. | |
and lim tanx = +o0, I |/
r=r43 T
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Definition (cotangent): "
1 COS T
cotan x := = — :E;é%ﬂ,kEZ
tanzx SN x
Comparisons:
. - sinx
Vr 6}015{: smr <1t <tant gnd then.Vz E]U, 5[ pcosy < —— <1,
xT
Sin & .
We deduce lim =1 ie. sinx ~x close to 0.
x—0 T

4.4. Trigonometric values of particular arcs

One must know the sines and cosines for certain particular arcs (or angles)
(expressed in radians) and know how to deduce from the trigonometric
circle the variations and signs of the basic circular functions.

y
/2
3n/4 V3/2 n/4
V2/2
5TI/6 - T[/6
T -1/2 0 12 vij2| 0
-V2/2 V2/2
7n/6 < 11n/6
vz,
S/4 2 en /4
4n/3 5n/3
3n/2
Exercise
solve in R:
: V3 2 1 — 2sin(x) sin(z)
L)sinz > %, 2)2 cos®(z) + cos(z) > 1, )= <, 4 > 1.
1 —2cos(x) — 2sin(z) —1
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Correction

1) The function = — sin : is even, we restrict the study to (0, 277).

sum:z? — rx=F3Vr=m—-3= %”
From the trigonomeiric circle we see that:
sina:>§ = %<x<25—”.

InR: sinx>§<:> +2k7r<:c< +2i<:7r kelZ.

2) ) The function & — sin 2 is even, we restrict the study to (—7r, 4-7).
Wepose X = cos(z), 2cos?(z) + cos(x) > 1 will be
2X2+X —1 >0 A :9,X1 = —1,X2= 5;”1911

2X2+ X —1>0 <= X < —1 (impossible) VX >3
1

cos(r) =5 <= v =FVr=—% 05

2
From the trigonomeiric circle we see that

1 _z o s
LObL>2<:>~ 3<JL<3.
In R: COS:L?>%<:>—§+2kﬁ<1:<§+2k7r,k‘62.

3) We restrict the study to (—7r, 7). Let's study the sign of — 2 c'm(( ))
1-2sin(z) =0 <= sin(z) =1 <= v=Ive=r-F=2
and 1—-2sin(z) <0 <= sin(z) > § <= <o <
1—2cos(z) =0 < cosx =3 < z=2Va=—1
and 1—2cos(x) <0 <= cos(z) >3 = —F<w<]
From the trigonometric circle we see that:
il w BT
r o |-m ~3 G 3 T +7
1 — 2sin(z) + 1 _ _
1 — 2cos(x) + _ _ +
1 — 2sin(x)
1 — 2cos(x) + - + -
We deduce 1 - 2sin(z) T
1—2cos(z) —

=

<0 e e] ”urfm]
T -, = -, —
36 - 136

1 — 2sin(z
nR: ﬂgoﬁme}—§+2kﬂ'g+2k’r u] +2kn%+2ﬁr},kez.

1 — 2cos(x)

4) We restrict the study to( —77, 477 ). Let us find the domain of definition D.
)

reD < 2sin(z)—1>0 < 51n(1)>% = E<a:f<‘r’—i""henceior:!:-'EDwehave

sin(z) sin®(z) — 2sin(z) + 1 (sin(z) —

2sin(z) — 1= =

The sel of solutions i

.
— } Toom { In R the set of solutions is & — ]% + 2k, c

6° 6
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4.5.Trigonometric relations:

Note 1: We must know the formulas of basic transformations.

cos(; 4+ x)=—sinzx e

sin(; + x) = cosw

-::Ds(j'—z‘r —x)=sinx

siu(‘;r — ) = cosT

cos(m —x) = — cos(x)
sin(r — x) = sin(x) T
cos(m +x) = — cos(x) cos(—x) = cos(z)
sin(w 4 x) = — sin(z) sin(—z) = — sin(x)
il SnICt’:S]rl:g:

(1) Basic things to remember

cos(a+ b) = cos(a) cos(b) — sin(a) sin(b)
sin(a + b) = sin(a) cos(b) + cos(a) sin(h)
tan(a) + tan(b)
1 — tan(a) tan(b)

sinf{e B

tan(a+ b) =

(2) By replacing in (1 )b by—b we oblain

( ff Jyurs (0 ez

cos{a— b) = cos(a) cos(b) + sin(a) sin(b)

sin(a— b) = sin(a) cos(b) — cos(a) sin(b)

tan(a— b) = tan{a) — tan(kb)

1 — tan(a) tan(b)

(3) By replacing in (1 )b by we obtain

cos(2a) = CDSEI[ﬂ] - sinzta] = Zcusz{a] -1=1- 2511’12{{1]

sin(2a) = 2sin(a) cos(a)

2 tan(a)
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(4) Summing (1) and (2) then putting’ * b= tgnga — b — bwe obtain

cos(a) + cos(b) = 2cos [ a; b) Cos a-; b] cos{a) —cos(b) = -2sin [ a; b sin 4 42_ b)
. . (a+h a—-hb . ] _(a-b a+hb
sin(a) + sin(b) = 2sin 5 )cus( 5 ] sin(a) — sin(b) =25m[ 3 )cus( 5 ]
(5) From (4) we deduce
cos(a) cos(b) = cos(a+ b) ;—cns{a— b)
—b)- b
sinfa) sin(b) = cos(a—b) 5 cos(a+ )
sin(a) cos(b) = sin(a+ b) —;sm{a— b)
cost(a) = M sin?(a) = ﬂ
2 2
By setting we get t = tan (7, alors
2
— , 2t 2t
cos(a) = 1+ 2 sin(a) = 1+ 12 tan(a) = 1—¢2

5  INVERSE CIRCULAR FUNCTIONS

5.1.arc cosine

The restriction
cos : [0, ] — [—1, +1]
is a bijection

Its inverse bijection is the function
arccosine.

y = arccos(x) ~ - —F -

Pl

1 1 e x

¥ = cos(x)

r
1
1

i Arc cosine function:

y = arccos(x)
-1 <z <41

{ x = cos(y)

0<y < +m
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o Itis continuous on [—1, +1] and differentiable on | — 1, +1[, we have

—1
Vv1—a?%

(arccos x) =

Proof: We have cos(arccos z) = z, by differentiating we’ll have

/ .
—arccos' © X sin(arccosz) = 1

, ~1 ~1 ~1
then, arccos r — = =

sin(arccosz) /1 — cos?(arccos ) V1 —a?’

5.2.arc sine

The restriction sin : [—5, +%] — [—1, +1 Its inverse bijection is the
27 12
is a bijection function arsinus.
T o Y=X
dr x T T y= arcsinx)
————————— 1 Il;l—'zz—————————————— Teeer ¥ = sin(x)

==}
[ P
=

1
[ E]
————————

Arc sine function:

{ y =arcsin(z) { v = sin(y)

—1<z<+1 ~I<y<+3

o It is continuous on[—1, +1] and differentiable on | — 1, +1], we have

1

(arcsinz) = ——.
V1 — a2
5.3.arc tangent
The restriction Its inverse bijection is the
tan :] — 5, +5[— R is a bijection function arctangent.
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Tangent arc function:

{ y = arctan(x) — { r = tan(y)

T T

e It is continuous and differentiable on R, we have

6.1.

1
(arctanz) = —,
V14 22
Remember:
Yxe[-1,1] arcsin(x)+ arccos(x)= g

sin(arccos(x)) = V' 1 — x2 = cos(arcsin(x))

Yx=0 arctan{x]+a:ctan[lfx]=g

Yx<0 an:taﬂ{xj+a.rctan[lf,r]=_g

6 LOGARITHM AND EXPONENTIAL

Logarithm

Definition and properties:

o There is a unique function, denoted In :]0, +o0o|— R such as:

1
Ve >0 : In'(z) = ~  and In(1) = 0.
It is the primitive of v — 1 which vanishes at point 1:

Vo >0 : ln(a:)—/(%dt.
1 ’

e In is a continuous, strictly increasing function and defines a
bijection between |0, +o00| and R.
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e In is a concave function and In(x) < x — 1. (the line defined by y = = — 1 is
the tangent to Cy, at the abscissa point 1)

filx)

L'unique solution de I'éguation In{x) = 1 est notée e (e = 2,718).

Algebraic properties:
This function verifies (for all a,b > 0):

Iln(a xb) =lna+ Inb, 2In(a") =nlna, neN,

3In($) =Ina —Inb, especially In(;) =1In(b~') = —1Inb

Netice: according to 3. we can extend property 2. to the exponents of Z:

In(a")=nlna, nez

Exercise

Simplify the following expressions:

— llf;((%s;) r#1, B= (111(;19))2 _ 111(372) = (111(:1:))2 B 111(3;2) .
Correction
_ In(2x) _ In(2) + In(x) _ In(2)
In(z) In(z) In(z)

B = (In(x))* — In(2?) = (In(z))? — 2In(z) = In(z) (In(z) — 2).

C = (In(2))2 = In(z?) + 1 = (In(x)) — 2In(z) + 1 = (In(z) — 1)
Exercise

solve in R:

Din(z)

- > 2)=In(z) + = o L n(s).
In(z) = L )2 In(z) + 9 In(1—2) <In(2) + 5 In(5)

Correction

Din(z) —

have

> 1, the equation is defined if and only if £ > 0 and & # 1; in this case we

In(x)

2
In(x)

In(x) — >1 <= In*(z) —In(z) —2 > 0.
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We pose X = In(z), we'lll get X2 — X —2,A =9, X; = —1, X5 = 2 then
X2-X-2>0 = X<-1VX>2

1
>1 <= In(z) < -1vn(z) 22 = 0<a < el = va>e?(we

We deduce In(z) —
In(z) e

haver # 1).

x>0 .
€.,

1 1 1 o .
2)5 In(z) + 5 In(1—2) <In(2)+ 5111(0), the equation is defined if and only 1f{ I

0<.’1’<1;

in this case we’ll have

%ln(:c) + % In(1-1)<In(2)+ %1n(5) < In(z)+In(l —z) < 2In(2) + In(5)
< Inz(l —z) < In(20)
— z(l—x)<20
= -1 +7r-20<0.
A=81,1 =4 25=+5then —241-20<0 e z¢ (} — 00, —4[U] +5,+oc[)ﬂ](),l[= &3

so the inequality has no solution.

6.2.Logarithm of base a>0

In(x)is called the natural logarithm. It is characterized by In(e) = 1,
We define the logarithm of base a=1 by

Inxz

log.(x) := na

so that log,(a) = 1. For a=10 we’ll get the decimal logarithm
log(.) :==Inyp(.).

Flx)y flx)=log,(x), a=>1

flx)=log,(x), a<1

Examples:
1) pH. measures the acidity of a solution. The pH of a solution is defined by

pH = —logio([H"]) (H*]denotes the molar concentration of ions #' of the
solution. The lower the pH of a solution, the higher its concentration of ions is
and more acidic is the solution).
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2) In computing, the logarithm in base 2 also intervenes: lo,gg(.).

Exercise

In acoustics, the intensity of a sound is measured in decibels  _ 10](,g(i) where J is the
Jo

acoustic power of the sound (inW/m) and Jy is the lowest power audible to a human at a
frequency of 1 kHz (.J, = 12 2W/m).

The range of intensity perceptible to the human ear goes from 0 dB (the lowest audible
power by a human being) to 120 dB which corresponds to the pain threshold. Here is the

intensity of some sounds:

Sound of tree leaves 10dB Ordinary conversation 65dB

Whisper 20dB Jackhammer at 3m 90dB

Car 50dB limit of pain 120dB
Knowing that a loudspeaker with a power of Q watts placed at a distance of R meters
from an observer develops an acoustic power of.J = 471: 7 W/m.

1) Calculate the intensity of the sound.
2) If the loudspeaker power is 100 W calculate the intensity of the sound perceived by
an observer located at a distance of 1m. What do you notice?

3) what about for a distance of 10m.

Correction

:]0 47TR2

1)1 = 10log( }1) = 10109( ) =10 (log(Q) —2log(R) — log(4m) — log(Jg))

Jo
2) IfQ) = 100 W AndR =1 mSOI = 10 (109(102) — 2log(1) — log(4m) — log(l?‘m)) ~ 129.
The pain threshold of the human ear is exceeded.

3)If Q =100 W and R =10 m then [ ~ 129 — 20l0og(10) = 109 décibels which already

exceeds the intensity of the jackhammer at 3m (see table above).

Exercise

solve in R:

l)loggw > 1 2)logs(z —7) > 2 3)logas(x* — 1) > 2.
Correction

1)1092”‘;22ﬁ > 1: the inequality is defined for T 7 0,

loggim—i_\f:ﬁ >1 e 7:“@ > 9l e —_3$+2\1{m >0

a) If < 0 then —3z + V22 + 9 > 0 and 27 < 0, so the problem has no solutions in this

case.
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%+ 9 — 92 9 — &2

b) Ifz > 0 then 27 > 0 and —34 + /22 + 9 — = ,
3r+vVr2+9  3r+ V2249

the solution set of the problem is }0, ﬁ [

2)logs(x — 7) > 2: the inequality is defined for vt — 7 > 0, D =|7,+00].
logs(x —7)>2 = 2 —7>5 &= x> 32

3)l092/3(:.52 — 1) > 2: the inequality is defined for 22—-1>0,D =| — 00, —1|U] 4+ 1, +00].

2
%) — %< ?, the solution set of the problem is

D= \/B 11U + 1 +/5[

6.3.Exponential

logas(2? —1) > 2 < 2* - 1< (

Definition and properties:

o The reciprocal bijection of In :]0,+oc[— R is called the denoted

exponential function exp.
e CXp is a continuous and indefinitely differentiable function
exp/(x) = exp(z)  And ¥n >N : exp™(z) = exp(z).
e XD is a continuous, strictly increasing function and defines a

bijection between R and |0, +oc|.

o exp is a convex function and exp(x) > x + 1. (the line defined by y = = + 1
is the tangent to C,, at the abscissa point 1)

fix),

'_-'--'"___.;T__ ___=
—
I
=
L)
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Notation: (¢xp(x) and €”)

If z € Z then: exp(x) = exp(z Ine) = exp(lne’) = e”.
We will denote forall z € R : exp(x)=e".

Algebraic properties:

For every a,b > 0:

1. exp(a 4+ b) = expa x expb, ie. g0l — et ¢ b
2. (expa)"=exp(na), néewZ,ie. (et)" = et
e? 1
—b . -b __
3. e’V = — especiall € = —.
eb peciatly el

Exercise

The number of bacteria N (1) contained in a culture at time t (expressed in days) is given
by N(t) = Ny et where N is the initial number of bacteria and 3a coefficient
depending on the type of bacteria and the surrounding environment.

The number of bacteria in a culture was estimated at 200,000 after 3 days and 1,600,000
after 4.5 days.

a. What is the bacteria count after 5 days?

b. When does the culture contain 800,000 bacteria?

Correction

a. N(3) = Npe3® = 200000 and ~ N(4.5) = Ny e = 1600000,  we deduce

N(@435) _ e 5 In(8) _ 200000
NG o =e¢ 7’ =8 then (= 5~ 1.386; Hence Ny = — ~ 16 000.
200000 r  Lasen
Ny = —1356x3 ~ 3127.76 We get N(t) = 3127.76 ¢'-36 t.

The number of bacteria after 5 days will be N (5) = 3127.76 €'3%6%% ~ 3198115,

o o 800000
CN(H) = 3127.76 19861 — 800000 «—= e!3%6t = ——— — 955 774
b. N (?) ‘ ‘ 312776 ot
ded In 255.774 4
= ———— =4 jours
we deduce 1336 7
Exercise

Any radioactive body disintegrates over time. The number of radioactive atomsN(t)at
time t (in years) is given by N () = Ny ¢! where Ny is the number of radioactive atoms

at time ¢ = 0 and /¢ a coefficient depending on the material.
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All living beings contain a constant proportion of carbon 14 atoms (a radioactive isotope
of carbon), i.e., D 10 €14 atoms per 12 g of carbon. When it dies, the C14 atoms begin
to decay according to the law stated above, with . = 1,2 1074,

To estimate the age of an object of animal or vegetable origin, it is therefore sufficient to
evaluate the number of C14 atoms contained in 12 g of carbon taken from this object.

a. We discover a vegetal remains containing D .101% €14 atoms per 12 g of carbon.

How old is he?

b. One calls period or half-life of a radioactive element the time necessary for the
disintegration of half of the initial number of radioactive atoms.

Determine the half-life of carbon-14.

Correction

a. We have N(t) = 5.10'1 ¢1-2107" — 5 1010,

5.101° —1In10
We deduce t = 55— In (5.1011) =19104 "~ —19188 ans.
b. We have N (t) = Nye'? 1074 %IV().
1 —In2
We deduce t= W In (5) = {2101~ —5776 ans.
6.4.Basic exponential a>0
Flx)y

Definition:

fix)=a*, a=1

Fora > Owe define

VeeR : a":=exp(x Ina).

fix)=a*, a<1

X

Exercise

The Beer-Lambert law states that the amount of light { which penetrates to a depth of x
meters in the ocean is given by I(:z:) = Iyc® with0 < ¢ < 1and I[] is the amount of light
at the surface.

a. Express x in terms of decimal logarithms.

b. Whether ¢ = 0.29, calculate the depth at which I = 0.01 I (this determines the area
where photosynthesis can take place).
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Correction

(;TD) _ III(I)IH(;)H(IO)'

In(0.01)

In(c

, I
a. We have [ = [jc*, so — = ¢, we deduce » = log,
0

I
b.c=0.25 and I = 0.01 I then 7 — ,zogc(f—) = 10g.(0.01) = ~ 3.32 m.

0

6.5.Power at real exponent

Definition:
For o € R we define

Ve>0: 2%:=explalnz)

Algebraic properties:
Forevery z,y >0, a,b € R:

1.7

4(ry)* =2 X y*, 5. lnz*=alnz.

—b __
at+b _ 70 % {Eb ’ 5 (xa)b — xab 3 = —

6.6.Gaussian functions.

Definition:
The Gaussian function is defined
on R by

2
r — e v

b
ta]
=,
1]
2
o

It is widely used in probability.

7 HYPERBOLIC AND INVERSE HYPERBOLIC FUNCTIONS

7.1.Hyperbolic functions

Definitions:
We define the functions hyperbolic cosine, hyperbolic sine and
hyperbolic tangent for every x € R by, respectively

et +e et—eg*

cosh(x):= — sinh(x) = —
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sinh(x) B eX—eg X gr_] 2

tanh(x) :=

cosh(x) e*+e* extl = 1+ex
fix)
fx) = cosh(x)
flx)
_________ N f(x) = tanh(x)
* X
————————— O

fx) =sinh(x)

Properties:
e Function cosh is even while the functions sinh and tanh are odd.
For every € Rwe have

1

. cosh(x) +sinh(x) = e*; cosh?(x)—sinh%(x)=1; 1— tanh?(x) =

cosh?(x)

Derivation:

Functions cosh, sinh and tanh are differentiable on R, we have:

(sinh{x))' = coshi(x); (cosh(x)) = sinh(x);

., (tanh(x))' = = 1— tanh?(x).

cosh?(x)
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Exercise
Show that cosh?z — sinh?r = 1.
Correction

. e 4 e T 2 e+ e T 2 823;_|_672$+2€a: 8756—62:5—872;8—"-26% e T
COSh2$—SlllhI=( 1 ) —( 7 ) = 7
4et e
_ e e 1
4

7.2.Inverse hyperbolic functions

Definitions:

Function hyperbolic sine argument defined on R is the inverse
bijection of the function sinh,

We note argsinh.

Function hyperbolic cosine argument defined on |1, +00| is the
inverse bijection of the function cosh.

We note CL?“gCOSh_

Function hyperbolic tangent argument defined on | — 1, +1]| is the
inverse bijection of the function cosh.

We note CLTgCOSh_
flx)
fix)
! ! fix) = argtanh(x)
1 | i
£ 1x) = argcosh(x) X _El i x
f(x) = argsinh(x) : '
Properties:
e Functions sinh and tanh are odad.
For every € R we have
YxeR argsinh(x) = In{x+ v x* + 1)
Vxe [1,+e0] argcosh(x) =In(x+ v x2 - 1)
1 1+x
Vxel—1,1] arg‘tanhl[x}=—]r1[
2 1—x
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Derivation:

e Function argcosh is differentiable on |1, +oc|, we have:

1
(argcosh(x)) = —.
vE—1
e Function argsinh is differentiable on R, we have:
1
(argsinh(x)) = ——.
vxt+l
e Function argcosh is differentiable on | — 1, +1[, we have:
1
argtanh(x))’ = .
(arg (x)) -2
d (arccos x)’ !
Remi. "y =
eminaer. m
: 1 1
(arcsinz)’ = (arctanx)’ =

V1 + 22
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