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Mathematics for Engineers 
 

This course is intended for students in the first year Engineering 

courses in Sciences and Technology. Its objective is to provide basic 

mathematical tools for this sector. 

Elementary numerical functions as well as equations and 

inequalities with a real variable correspond to the secondary school and 

are assumed to be known. 

We begin with a reminder of the algebraic notions relating to 

functions in . In the next chapter we present the notions of sequences, 

series and convergences. 

Chapter 3 presents basic functions, their properties and their 

graphical representations which summarize some information about 

these functions. 

Chapter 4 treat the notions of limits and continuity and their 

applications. 

Chapter 5 presents the notion of derivation, approximations 

(limited developments) and applications, as well as notion of 

optimizations (minimum and maximum). 

Chapter 6 deals with integral calculus and generalized integrals. 

We end with a chapter on the ordinary differential equations of 

order one then linear ordinary differential equations of order two with 

constant coefficients. 

In this document are included many corrected exercises to show 

the interest and omnipresence of Mathematics in the various sciences 

(physics, economics, etc.). 

  



Notations: 

Usual sets in mathematics 

 

Intervals 

 Inequalities Corresponding set Graphic representation 

 

 

 : set of natural numbers 

 : set of natural numbers without zero 
 : set of relative numbers (positives, negatives or zero) 
 : set of relative numbers without zero (positives or negatives) 
 : set of rational numbers (  such that  and ) 

 : set of real numbers 
 : set of natural numbers without zero 

 : set of complexe numbers 
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1st chap.  :  Properties of the R set 

1 

1.1. Upper bound, lower bound 

Definition: 

If  not empty. 

• A real M is a majorant (or upper bound ) of A if: . 

• A real m is a minorant (or lower bound ) of A if: . 

If an upper bound (resp. a lower bound) of A exists, we say that A is 

upper bound (resp. lower bound). 

There is not always a majorant or a minorant, in addition we do not 

have uniqueness. 

Examples 

1) 3 is an upper bound of ]0, 2[; 

2)  are minors of  but there is no upper bound. 

3) Let A= [0, 1[.  

a). upper bounds of A are exactly the elements of , 

b). lower bounds of A are exactly the elements of . 

1.2. Infimum, Supremum 

Definition: 

If  not empty. 

• The supremum of A is the smallest upper bound. We note : . 

• The infimum of A is the largest lower bound. We note : . 

Examples 

A = [0, 1[.  

1) .  2) , but  does not exist. 
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1.3. Maximum, minimum 

Definition: 

Let be  not empty. 

• A real M is a maximum (or greatest element) of A if: 

 

If it exists, the greatest element is unique, then we note . 

• The minimum (or smallest element) m of A, is defined by 

 

If it exists, the smallest element is unique, then we note . 

Notice : the maximum or minimum does not always exist. 

Examples 

1) . 

2) The interval ]a, b[ does not have maximum, nor minimum. (However, it is 

bounded). 

3)  but  does not exist. 

 

Bounded set: 

• Any subset , nonempty and upper bounded admits a 

supremum 

• Any subset  nonempty and lower bounded admits a infimum. 

 

Notice : 

This is the whole point of the supremum (resp. infimum) compared to the 

maximum (resp. minimum) : as soon as a part is bounded it always admits a 

supremum and a infimum; which is not the case for the maximum and minimum 

as in the example . 

Exercise 

 Either  defined by  and . Determine : 

. 
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Correction  

  

Question :what can be said about the extrema of  on  ? 

Exercise 

If  defined by  and . Determine : 

. 

Correction  

  

Question :what can be said about the extrema of  on ? 

Exercise 

 If  defined by  and : Determine : 

. 

Correction  

  
Question :what can be said about the extrema of  on ? 

1) . 

2) .  

We notice that the sup is reached in  for ; we deduce 

that   . 

3) . 

Note that the infimum is reached in  for ;  we deduce 

that   . 

 

1) . 

 

2) . 

 

3) . 

1) . 

2) ; does not exist. 

3) ; does not exist. 
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2 

Let  and   is the unique integer such that  

    . 

   

 

  

Example: What is the floor and ceiling of 2,31? 

 

1 

 

 

• The floor function is defined on  with values 

in  by 

    

It is usually denoted ⌊x⌋. Historically, it has 

been (and still) called the integral part or 

integer part of x, often denoted [x]. 

• The ceiling function is defined on  with 

values in  by 

    

It is usually denoted ⌈x⌉. 

1. The constant function is defined on  by 

. 

• It is continuous and indefinitely 

differentiable, we have: 

 
• Its curve is a horizontal line passing 

through the point (0.C). 
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2. The linear function is defined on  by 

   . 

NB : a map f is said to be linear if (by definition): 

    And . 

• Function   is continuous and indefinitely differentiable, we 

have:   And 
 

 

• Its curve is a straight line (D) (not vertical) passing through the origin. 

• The number  is called the leading coefficient. If the 

reference is orthonormal, it is called slope. 

 

 

 

Knowing a point  is enough to determine the line (D) 

• analytically [ ]  that is   

• or geometrically [ ]. 

 

3. The affine function is defined on  by 

   . 

 

• It is continuous and indefinitely differentiable, we have: 

   and 
 

. 

• Its curve is a straight line (D) (not vertical). 

• The number  is called the leading coefficient, 

the number  is called the abscissa at the origin. 

• I  the function is increasing (the line is ascending). 

If  the function is decreasing (the line is descending). 

• If  the function is increasing 

and the line is ascending 

• If  the function is increasing 

and the line is descending 



6 

 

Consider the function:   : 

•  goes through M(a,b). 

• In a cartesian coordinate system    where  

denotes the angle between the line  and the axis (x'ox). 

  

 

For two lines    and    we have 

     and    . 

 

The knowledge of two points  is enough to 

determine the line (D) 

• analytically:  or ; 

• geometrically [ ]. 

. 

Exercise 

  

Correction  

Graphically we have  where  and , we deduce : 

Analytically    i.e.   that is  

. 

Find the equation of the lines r and s 

shown below and calculate the 

coordinates of the point of intersection. 
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Geometrically 

     

 

 

Graphically we have  where  and , we deduce : 

Analytically:   that is . 

Geometrically 

      

Intersection  if it exists, will be the solution of the system 

, equivalently  , then . 

Exercise 

Let the linear system   

Geometrically determine the values of  such that this system has: 

1.) an infinity of solutions;  2.) no solution;  3.) one-stop solution. 

Correction  

Geometrically the system  is the intersection of the lines  and 

, then : 

1.) The system has infinitely many solutions if and only if  

    :    i.e.   . 

2.) The system has no solution if and only if  

     :  i.e. . 

3.) The system has a unique solution.    i.e.  . 
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1.1. Sign of the 1st degree polynomial 

      

 sign of ( ) sign of ( ) 

2 

 

Exercise 

Let   defined on . Simplify the expression of  then plot 

a curve representative of the function . 

.Correction   

 

 

Exercise 

Find all solutions in  of the following inequalities : 

1)   2)  

The absolute value function is defined on  

by 

 

• Function  is continuous. 

 It is not differentiable at x=0 

• Its curve is a broken line at (0,0). 

                   

       .       .      . 
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.Correction  

1) 

      

  i.e.    i.e.  

Solutions   

We deduce : . 

2) 

        

    

    

inequality 

 

i.e.  

 

i.e.  

 

Solutions   No solutions 

We deduce : . 
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2nd chap.  :   Numerical sequences 

1 

Definition (Suites): 

A sequence is an application . 

For , we note  by  and we call it nth term, term of order n 

or general term of the sequence. 

Notice : 

In practice, there are essentially two methods for defining a sequence: 

1) we define  directly as a function of n, for example 

. 

whose first terms are  

2) or we define the sequence by recurrence, for examples : 

a) the arithmetic sequence of ratio  and first term  : 

 

b) the geometric sequence of ratio  and first term  : 

 

Example : Size of a sheet of paper  

  

The number  in  indicates the number of times the basic format  was 

divided into two: a division into halves of a leaf  gives two sheets , whose 

division in two gives twice two leaves , etc... 

The format of a rectangular sheet of paper is the couple formed 

by its width and its length. This format varies according to the 

use of the sheet, the period and the geographical area. For 

common uses, especially in office automation, the A4 format is 

now very widespread. 

The format is designed so that the 

proportions of the sheet are maintained when it is 

folded or cut in half along its length, thus avoiding 

loss in bookmaking by folding, assembly, 

enlargement and reduction by the factor of two . 
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Starting from a paper of format , whose measurements are 21cm x 29.7cm in 

the normal direction of writing 

1) find the measurements of the formats . 

2) give the size of the format  in general. 

Correction 

Note by  the width and by  the length of the format . 

1) To get the format  two sheets should be juxtaposed   

(returned widthwise), we get . 

Similarly we get 

 ,  and . 

2) Thus by passing from the format  in the format  we will have 

  or . 

With .  Note that the format  is of area . 

Definitions (Vocabulary): 

A sequence  is said to be (from a certain rank) 

• increasing if it exists  such as 

 . 

• Decreasing if it exists  such as 

 . 

• Monotone whether it is either increasing or decreasing. 

• Upper bounded if it exists  such as 

 ;  

we say that M is an upper bound of the sequence. 

• Lower bounded if it exists  such as 

 ; 

we says that m is a lower bound of the sequence. 

• bounded if it is both upper and lower bounded, i.e. if there is

 such as 

 . 

Notice : 

1) A sequence  is increasing if and only if : 

     . 
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2) If , then  is increasing if and only if : 

     . 

2 

2.1. Limits 

Intuitive notion of the limit: 

Terms  of a sequence of real numbers tend to the number (limit) 

if: 

• The distance between the terms of the sequence  and the 

limit  is as close as you want from a certain rank. 

• Or : for any neighbourhood of the limit  (i.e. an interval of 

center  and radius ) we have all the terms from a certain rank 

of the sequence  in that neighbourhood. 

     

✓ On the left sketch we present a sequence of real numbers  which tends towards 

 ( ) when n tends to infinity ( ). 

We notice that for all given , there exists  from which we have the 

distance between any term ( ) of the sequence and the limit  ( ) is less 

then  :     . 

We also notice that for all given , there exists  from which (i.e. for 

) we have all the terms  of the sequence in the neighbourhood  of  (that is an 

interval cantered at  with radius ):   . 

✓ On the right sketch we present:  which tends to the origin ( ) when  

tends to infinity ( ). 

We notice that for all given , there exists  from which we have the 

distance between any point  ( ) of the sequence and the limit O ( ) 

is less then  :     . 
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We also notice that for any neighbourhood  of the origin (disk cantered at the 

origin and of radius ) it exists  from which from which (i.e. for ) all 

points are in the neighbourhood of the origin :  . 

 

Definition (Finite limit): 

The sequence  has for limit  if: 

for every , there is a natural number  such as 

  . 

In other words: the terms of the sequence  are as close as one 

wants to  from a certain rank. 

We also say that the sequence  tends to . We note 

  or . 

Definition (Infinite limit): 

The sequence  tends to  if: for every , there is a natural 

number  such as  . 

The sequence  tends to  if: for every , there is a natural 

number  such as  . 

We denote 

  or . 

 

Definition (Convergence, Divergence): 

A sequence  is convergent if it admits a finished limit. 

It is divergent if not [i.e., either the sequence tends to , or it does not 

admit a limit like ]. 

Notice: Deleting or modifying a finite number of terms does not modify the 

nature of the sequence (convergence or divergence). 

We can talk about the limit if it exists, because there is uniqueness: 

Proposition (Unicity of the limit): 

If a function admits a limit, then this limit is unique. 
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Property (Operations and Limits): 

Let be  and  two sequences such that 

      and    with , 

then agreeing in  that  and  we have : 

•  except for the case  (which is an indeterminate case). 

•  except for the case  (which is an indeterminate case). 

• . 

• If  and  from a certain rank then  . 

• If  and  from a certain rank then 

 except for cases  or  (undetermined cases). 

 

Theorem (Necessary condition) 

Any convergent sequence is bounded. 

An unbounded sequence cannot be convergent. 

To see that, it will be enough to take .  

 

Limits to remember: 

•   

•  . 
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• . 

• For  

 

Examples 

1) ,  2)  

3) . 

Exercise 

Consider a regular n-sided polygon inscribed in a disk of radius r. Show that its 

perimeter tends to the length of the circle as n tends to infinity. 

Correction 

   

Exercise 

Calculate, if they exist, the following limits: 

1) ,  2) ,  3) ,  4) . 

5) ,  6) , 7) , 8) ,  

9) , 10) . 

Correction 

1) .  

2) . 

  so, the perimeter is 

. 

Then we have 

. 
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3)  and  , using the frame theorem we deduce 

. 

4) :  If we have   and  if 

we have . Therefore, we have two distinct adherent 

points, so  does not exist. 

5) . 

6) . 

7) : . 

8) : whether  we have  and if

 we have ; so  does not exist. 

9) . 

10)  

2.2. Comparison 

Theorem (Comparisons): 

Let be two sequences  and  convergent satisfying (from a 

certain rank)    then 

. 

In particular I f   then  . 

Attention: after passing to the limit, strict inequalities become wide 

inequalities: 

. 

Example:  but . 



17 

Theorem (frame or gendarmes): 

Let  be a sequence. If there are two convergent sequences  

and  such that: 

1) 
 
(from a certain rank)  2)  

then  converges and we have  . 

Example 

We have   with ,  

we deduce applying the theorem that . 

Corollary: 

If  is a bounded sequence and  converges to  then the 

sequence  converges and we have . 

Example 

If   is the sequence given by  and  is defined by

, then   because . 

Exercise 

Answer true or false, justifying your answer. 

1. If a sequence is upper-bounded, then  is bounded. 

2. If a sequence  converges to 0, then the sequence  converges to 0. 

3. If a sequence  converges to  and if it is in strictly positive terms, then . 

4. If a sequence  converges to 0, then the sequence  converges to 0 whatever is 

the sequence . 

5. If  and  are two convergent sequences, the sequence  is also 

convergent. 

6. If the result  is convergent then the two sequences  and  are also 

convergent. 

7. If  and  are two sequences such that from a certain rank we have , then 

the convergence of  implies convergence of . 

8. If a sequence  is monotone, then it converges. 

9. If a sequence  is monotonic and upper-bounded, then it converges. 
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Correction 

1. True: if there exists a positive real a such that  has then  therefore 

the sequence  is bounded. 

2. True: , we obtain the result by applying the gendarme’s theorem. 

3. False:   for all n but . 

4. False: counterexample  and  but  . 

5. True Because if  and , we have  so applying the 

comparison theorem we  deduce that  is convergent to a limit . 

6. False: counterexample, for  and  we have  while both 

 and  diverge. 

7. False: for  and  we have , but  converges while  

diverges. 

8. False:  is monotonic but divergent. 

9. Wrong: If the sequence  is monotone then two cases arise:  is increasing then it 

converges since it is also upper-bounded;  is decreasing then nothing can be said about 

its convergence. 

Exercise 

Calculate, if they exist, the limits of the sequences following: * 

1) , 2) , 3) , 4) , 

5) , 6) , 7) . 

Correction 

1)  so . 

2).  and , from the frames theorem we deduce 

. 

3)  and   being an increasing and upper-bounded 

sequence, it converges. 

Moreover, we have . 

4).  and ,  

we deduce . 

5) : If  we have  and if 

we obtain . We have two 

subsequences with two distinct limits, therefore  does not exist. 
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6).  and , we deduce . 

7) . 

 

Definition (equivalent sequences, negligible sequence with respect to ...) 

• Two sequences   and  (non-zero from a certain rank) are said to be 

equivalent (near infinity) if  . We note . 

•   is said to be negligible compared to   if  .  

We denote . 

2.2.1. Comparisons to remember 

1) If  a polynomial function, then 

. 

2) If  a rational function, then 

. 

3) Trigonometric functions: 

 ,   , . 

4) Logarithm, exponential, power functions 

, , . 

5) For  ("exponential base cste << factorial << exponential base var.") 

. 

6) For  ("logarithm << power << exponential") 

 . 
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Examples 

1) . 

2) . 

Exercise 

Calculate, if they exist, the limits of the sequences : * 

1) ,  2) ,  3) ,  4) ,  

5) , 6) ,  7) , 8) ,  

9)  10) . 

Correction 

1)  because . 

2) . 

3)  because . 

4) we have   and    so  ,  we deduce  

  

5)   

6)  then . 

7) : if  we have  and if  

we have . Therefore  does not exist. 

8) . 

9) , we deduce   

10)  
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Exercise 

Calculate, if they exist, the limits of the sequences  : * 

1) ,  2) ,  3) ,  

4) . 

Correction  

1)we have from where

. 

2) , from where

 

3) , from where  . 

4) : whether we have

  

And if  we have .  does not 

exist.
 

4) ; we have And

we deduce from where . 

Exercise 

Calculate, if they exist, the limits of the sequences following: * 

1) ,  2) ,  3) ,  

4) . 

Correction  

1)  

 ,  we deduce . 
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2)   

,  we deduce . 

3)   

,  we deduce . 

4) . For every  we have ,  

adding term by term we get  . 

On the other hand  and  so 

,
 

we deduce from the gendarmes theorem that  . 

2.3. Extracted sequence 

2.3.1. Definition and properties 

Definition (Extracted sequence or sub-sequence, adhesion value) 

Let  be a sequence. We call extracted sequence or sub-sequence 

of  every sequence  defined by  

   ,   where   is a strictly increasing map. 

We say that  is an adherent point of the sequence  if there 

is an extracted subsequence that converges to . 

Example 

✓  and  are subsequences of the sequence . 

✓ ,  and  are sequences extracted from the 

sequence . 

✓ Consider the sequence  :  is an extracted 

sequence with limit  and  is an extracted sequence 

with limit . 

Therefore,  has two adherent points,  and . 
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Exercise 

Determine the adherent points of the sequence  in the following cases.  

   1)   2) . 

Correction 

1)  and , hence the set of adherent points is . 

2) , , ,  and the values repeat … so we can deduce that ,

 and , hence the set of adherent points is . 

 

Theorem 

Let be  a sequence. 

• If  then any subsequence converges also to the limit . 

• If a sequence extracted from  diverges then  diverges. 

• If two sequences extracted from  have different limits (two 

different adherent points) then  diverges. 

 

• If we can decompose  into two (or more) extracted sequences 

converging towards the same limit  then  converges also 

to the limit . 

For example, if  and  converge to the same limit , 

then  converges to . 

[the same frame if we decompose  in ,  and 

]. 

Example 

✓ The sequence  converges to , so 0 is the unique 

adherence value of the sequence . 

✓ The sequence  admits two different adherent points :

 (limit of ) and   (limit of ), so it diverges. 
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✓ Consider the sequence :    and  

converge to the same limit , then converges to  which is 

the unique adherent point of . 

2.3.2. Adjacent sequences 

Definition (Adjacent sequences) 

The sequences  and   are said to be adjacent if 

1)  is increasing,  2)  is decreasing  2) . 

 

Theorem (of monotone convergence): 

• If a sequence  is increasing and upper-bounded then it 

converges and  . 

• If a sequence  is increasing and not bounded then it diverges 

towards . 

• If a sequence  is decreasing and lower-bounder then it 

converges and . 

• If a sequence  is decreasing and not lowered then it diverges 

towards . 

 

Theorem 

If two sequences are adjacent then they converge and have the same 

limit. 

Indeed, the terms of the sequences are ordered as follows: 

. 

The sequence  is increasing and upper-bounded by , so it 

converges to a limit . 

The sequence  is decreasing and lower-bounded by , so it 

converges to a limit . 

Being adjacent, we have  which means . 
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Example: Let be  and . 

  is increasing because , 

  is decreasing because , 

and . 

So  and  are adjacent and, applying the theorem,  and 

 converge and we have . 

Indeed, by a direct calculation, we have . 

Example: Consider . We want to show that

converges. For this we introduce the two sequences  and 

 then we prove that they are adjacent. 

 is increasing because 

 , 

 is decreasing because 

, 

and . 

So  and  are adjacent and, by the theorem, the two sequences 

converge. Especially  converges i.e. 

 . 

We say that the serie (infinite sum)    converges. 

Exercise: (Arithmetic-harmonic mean) 

Let  and  be two sequences such that  and  

     and  

1. Check that the sequence  is stationary. 

2. Assuming it exists, calculate the limits to the two sequences. 
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3. Show that the sequences   and  are adjacent. Are they convergent. 

Correction 

1.  so the sequence  is 

stationary. 

2. If  and  (assuming they converge) then  

   . 

On the other hand,   we deduce . 

3. We want to show that the two sequences   and  converge. For this we will 

prove that they are adjacent 

 so, the sequence   is decreasing. 

, we deduce that the sequence   is 

increasing. 

According to the previous question obviously . 

So   and  are then adjacent and consequently they both converge to the 

common limit . 

Notice : For  we have different averages 

     . 

   

Exercise (Arithmetic mean geometric) 

Let   and  be two sequences such as  and  

  and  

Show that the two sequences   and  converge to the same limit. 

 

The harmonic mean is denoted by H , the arithmetic 

mean is A  and the geometric mean is G .  

Q denotes a fourth mean, the quadratic mean. 

Since a hypotenuse is always longer than a leg of a 

right triangle, the diagram shows that  

Q > A > G > H. 
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3 

3.1. Approximation of reals by decimals 

Proposition 

, posing  ,  is a decimal approximation of a 

within , in particular . 

Indeed: according to the definition of the integer part, we have 

, 

so    i.e.  . 

Notice: 

1. The terms  are decimal numbers, in particular they are rational 

numbers. 

2. So we have for every , there is a sequence of rational numbers

 which converges to . We say that the rational set  is dense in the 

set of real numbers . 

3.2. Linear recurrent sequence of order 1 

Definition (Arithmetic sequence) 

A sequence  is said to be arithmetic of ratio  and first 

term  if 

. 

We notice that  . 

EXAMPLE 

1)Constant sequences are arithmetic sequences with ratio . 

2) The set  constitutes the set-image (range) of an arithmetic sequence of 

first term  and reason . 

Exercise 

The sale price of a car initially marketed in 1995 decreases every year by the same 

value. In 2002, it was displayed at a price of €13,200. In 2006, we note a sale price of 
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€11,600. We note  the selling price of this model in the year (1995+n) and we 

consider the sequence . 

1. Give the nature of . 

2. What was the initial sale price in 1995? 

3. From what year will it be possible to acquire the car for less than €10,000? 

4. From the beginning of 1999 to the end of 2010, a dealer buys ten of these models every 

year. Determine the total amount spent to purchase all of these vehicles. 

Correction  

1) The selling price decreases every year by the same value then the sequence  is 

arithmetic 

. 

We have  and  from where 

, 

we deduce the ratio from the sequence is . 

2) The initial sale price is . 

3) ;  

so it is from the year 2010 that it will be possible to acquire the car for less than 10000€. 

4) The total amount spent from 1999 to the end of 2010 is 

 

 

Definition (Geometric sequence) 

A sequence  is said to be geometric of ratio  and first term

 if 

. 

We notice that  . 

Example 

1) Constant sequences are geometric sequences with ratio . 

2) Let  be the geometric sequence defined by:  and ratio , 

then    , i.e. 
 

Exercise 

A microbial population sees its number increase by about 10% every hour. Knowing that 

it has 200 individuals when we observe it, what will happen after 24 hours? 
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Correction 

Note  the number of individuals after n hours. The population increases by 10% every 

hour so 

, 

where  is the initial population. The sequence  is geometric with ratio 

. 

After 24 hours, there will be approximately  people. 

Exercise 

Determine the nature of the following sequence and study its convergence: 

. 

Correction 

It is a geometric sequence with common ratio .  We study and represent the 

function  

 
So , we deduce from the curve that 

 and in this case . 

For  we will have  and then  , we’ll have . 

Exercise 

A unit square is divided into 9 identical squares, the central square being coloured (Step 

1). Each of the remaining eight squares is divided according to the same principle, and we 

repeat this process ad infinitum. What will be the area of the coloured surface? 

Correction 

 

Note    the area of the colored surface in step ; we have . To calculate 

the area  of the colored domain at the step , just add to  one-ninth of the area 

of the remaining surface namely . We then obtain the following relationship: 

. 

It is an arithmetic-geometric sequence; therefore, at limit, the area of the coloured domain is 

equal to  . 
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 is the solution of the equation  which yields to . 

3.3. Linear recurrent sequence of order 2 

Definition (Linear recurrent sequence of order 2) 

A linear recurrent sequence of order 2 is given by 

  

where A, B, a and b fixed real numbers. 

Let us look for sequences of the geometric type satisfying this 

system. The general term of this sequence can be of form   with 

 i.e. . 

If , then there are two distinct real roots: 

 and ; 

thus, any solution of  is of the form 

. 

Now we just have to find the coefficients  and . Considering the 

"initial" conditions  we have to solve the system 

 

Exercise: (SCONTINUATION OFFIBONACCI) 

The sequence of FIBONACCI is a sequence of integers such that each term is the sum of the two 

precedent terms. It usually starts with the terms 0 and 1 (sometimes 1 and 1). 

It gets its name from Leonardo FIBONACCI, an Italian mathematician from XIIIe century 

who described the growth of a rabbit colony: 

“A man puts a couple of rabbits in an isolated place. How many couples do we get in a year 

if each couple generates a new couple every month from the third month of its existence?” 

In this (ideal) population, we assume that: 

1)at (beginning of) the first month, there is just one pair of young rabbits; 

2)the rabbits do not procreate until (beginning of) the third month; 

3) each (beginning of) month, any pair likely to procreate effectively generates a new pair of 

young rabbits; 

4) there is no mortality (hence the FIBONACCI sequence is strictly increasing). 
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Correction 

Note  the number of pairs of rabbits at the beginning of month n. We have by hypothesis 

 and . 

In the month  we will have  pairs ; it results by adding  couples of the month 

 and the newborns that correspond to rabbits aged at least two months, that is  

couples. 

We deduce from this analysis  

. 

We put  , we thus obtain the recurrent form of the FIBONACCI sequence: each term 

of this sequence is the sum of the two previous terms: 

. 

Looking for solutions in the form , the polynomial characteristic is , 

 and roots will be 

     ,     . 

Thus, any solution of  is of the form (called BINET formula): 

. 

Considering the "initial" conditions we get the system 

 

hence the number of couples in the  year  . 

3.4. Recursive sequence defined by a function 

Let  be a function. A recurring sequence is defined by its first 

term and a relation allowing to calculate the terms step by step (successively): 

    

A given recurrent sequence is not necessarily convergent. When the limit 

exists, the set of possible values is restricted by the following result. 

Proposition: 

If the recurring sequence  converges to  and if the function

is a continuous, then  is a solution of the equation:    . 

So, if the limit exists, this proposition affirms that it is to be found among 

the solutions of the equation   (fixed point of the function ). 
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Definition (Fixed point): 

A value , checking  is called fixed point of the function . 

We are going to study in detail two particular cases: increasing and 

decreasing functions. 

3.4.1. Case of an increasing function 

For an increasing function, the behaviour of the sequence  defined by 

recurrence  is quite simple: 

Case 1:    increasing sequence. 

Case 2:    decreasing sequence. 

Here is the main result: 

Proposition 

If  is a continuous and increasing function, then 

, the recurring sequence defined by  is 

monotonic and converges to  checking the equation . 

    

Exercise 

Either the function defined by .  

Study the recurrent sequence defined by  and .  

Notice : There is an important assumption that is somewhat 

hidden: 

. 
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Correction 

  

2. Calculation of fixed points, values that satisfy  : 

For this let’s solve the equation  . 

Fixed points are . The limit of  is to be found among the values . 

3. Convergence of the recurrent sequence (Separation of cases): 

From the representative curve  intersect the prime bisector in points of abscissa +1 and 

+2. For  or . the sequence will be constant:   

Otherwise, we have 

Case 1: ; in this case ( )  then the sequence.  is increasing 

and upper-bound by 2, therefore it converges to the fixed point . 

Case 2: ;in this case ( )  then the sequence.  is decreasing and 

lower-bound by 0, so it converges to the fixed point . 

Notice: 

The graph of the function plays a very important role, it must be drawn 

even if it is not explicitly requested. It allows you to get a very precise idea 

of the behavior of the sequence. 

3.4.2. Case of a decreasing function 

If the function  is decreasing then  is increasing, applying the 

previous result to  we obtain: 

Proposition 

If  a continuous function and decreasing, then , 

the sequence defined by   check what follows: 

• The sub-sequence  converges to a limit  checking

. 

• The sub-sequence  converges to a limit  checking

. 

• It may (or not) . 

2

2

0 1

1

x

y1.Study of the function f : 

(a) f is continuous on R.  

(b) f is differentiable on R, f'(x) > 0 on the interval [0, 

2] so that  is strictly increasing.  

(d) f (0) = 1/2 and f (2) = 2 then .  

We conclude that the sequence is bounded. 



34 

Exercise 

Let  be the function defined by . Study the recurrent sequence defined by 

    ,   for  

Correction 

1. Study of f 

The function f is continuous and strictly decreasing on

.  then 

. 

2 Calculation of fixed points. 

Find the x values satisfying . 

. 

. 

  so, the only fixed point to consider is . 

Note that the sign of    informs us that: 

(*)     and   (**)   

  

3. Convergence of the recurrent sequence (Separation of cases): 

Case: 1 ; 

1) From (*)   ,   being increasing, then the sequence 

 is increasing. 

2) From (**)      being increasing, then the sequence 

 is decreasing. 

3)  is creasing then  ;  we deduce 

that 

. 

We conclude: 

1) the sequence  is increasing and upper-bounded by , so it converges to the unique 

fixed point . 

2) the sequence  is decreasing and lower-bounded by , so it converges to the 

unique fixed point . 

So, the sequence  converges to . 
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Case 2:  we have ; 

we deduce that: 

1) From (*)   ,   being increasing, then the sequence 

 is decreasing. 

2) From (**)   ,   being increasing, then the sequence 

 is increasing. 

3)  is creasing then   ;  

we deduce that 

. 

We conclude: 

1) the sequence  is decreasing and lower-bounded by , so it converges to the unique 

fixed point . 

2) the sequence  is increasing and upper-bounded by , so it converges to the 

unique fixed point . 

We deduce that the sequence  converges to . 

Exercise 

Study the sequence defined by  for the following cases: 

1) , ,  2) , ,  3) , , 

4) , ,  5) , . 

Correction 

1) , .  is increasing. 

a) Let us show that  : we have ,  suppose   then 

;  

hence by the recurrence principle we get: . 

b) Let us study the variation of  :

  

so  is decreasing. 

c) Let’s show that  is convergent:   is decreasing and lower-bounded by 1 so it 

converges. 
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d) seek the limit: note its limit , we must have .  

Seeking for the fixed points: , so  is solution of equation 

, it is .  It is the limit of . 

 

2) , ,   is increasing. 

a) Let us show that :  we have ,  suppose , then 

  , 

hence by the principle of recurrence we get  . 

b) Let us study the variation of  :  the 

denominator is positive, let's study the sign of the numerator: , , ,

, for  we have  , we deduce that  is increasing. 

c) Show that  is convergent:  is increasing and upper-bounded by 2, so it converges. 

d) seek the limit: denote by  the limit, we must have .  

Seeking for the fixed points:  ,   is solution of equation 

, , solutions  and . As   and  is increasing, 

we conclude the limit is . 

 

3) , ,   is increasing on . 

a) Let us show that  : we have , suppose , then  

    , 

hence by the recurrence principle   . 

b) Let us study the variation of  : 

  on , so  is 

increasing. 

c) Convergence:  is increasing and lower-bounded by 2; we cannot conclude anything on 

its convergence. 

If it converges let us denote by  its limit, we must have  and 

;  is solution of , . There is no real solution 

and therefore  cannot be convergent. 

As  is positive strictly increasing then it diverges towards . 

 

4) , . Consider the function . We have 

   , so the function is increasing. 

a) Let us show that :  we have ,  suppose , then 

,  

hence by the recurrence principle   . 

b) Let us study the variation of  : ,   is 

decreasing. 
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c) Convergence:  is decreasing and lower-bounded by 0, so it converges. Note  its limit, 

we must have  and ; so  is solution of equation  that is . 

 

5) , . Consider the function ; we have 

 so the function is increasing on . 

a) Let us show that : we have ,  suppose , then 

, hence by the recurrence principle 

 . 

b) Let us study the variation of :

  

so  is decreasing. 

c) Convergence:  is decreasing and lower-bounded by 0, so it converges. 

Note by  its limit, we must have  and , so  is solution of equation 

, that is . As  and  is decreasing, we deduce that . 
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3rd chap.  :  Generalities on Functions 

1 

1.1. Definition, graph, equality, restriction, intersections 

Definition : 

A function ,is a "process" which at each real 

(input) associates (at most) one real number  (image) noted . 

We notice: 

 

The domain  is the greatest set of real numbers  for which 

exists. 

Notice 

You can define a function in different ways: 

1) using an expression such as:  with ; 

2) using several expressions:  with ; 

3) using certain curves, for example an electrocardiogram. 

Notice 

1) Attention: do not confuse the function f and the real f(x). 

2) The variable x is mute; we can very well write  Or . 

Exercise 

Let be the function defined by   

Give  , , , , , , , . 

Correction 

,  doesn’t exist, , , 

, , 

, . 
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Exercise 

A hot air balloon rises vertically from the ground at a speed of . 

Express, as a function of height, the distance between the balloon and an observer 

initially located 200 m away (see drawing below). 

Correction 

We apply the Pythagorean theorem: 

 

  then  

 

Exercise 

We want to build a steel tank for propane gas in the shape of a cylinder of 10 m long with 

a hemisphere at each end (see picture). 

Express the volume of the tank (in m3) as a function of the radius r (in m). 

 

Correction 

V(total) = V(half-ball) + V(cylinder) + V(half-ball) = V(ball) + V(cylinder). 

. 

  

Correction 

At constant speed  the distance traveled in one time  East .  So, 

using Pythagoras theorem 

      . 

To go from A to P the goalkeeper will put 

. 

Notice 

Usually, the domain  of a function is not given, it needs to be specified. 

Exercise 

The keeper of a lighthouse (point A) must join his 

house (point B). He travels by canoe at a speed of 4 

km/h and on foot at a speed of 5 km/h. The coast is 

assumed to be straight. It will dock at point P such 

that . If  is the total time to reach home, 

express t in terms of . 
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Exercise 

Decide if the relationships below are functions of x. If yes, find the definition domain D 

1)  2)  3)  4)   

5)  6)  7)  8) . 

Correction 

1)    2)     

3)      4)  is not a function because every  

admits two images. 

5)    

6)   is not a function because every  admits two images.  

7)     8)  . 

Definition (Graph of a function): 

The graph of  is the set . 

Usually, we represent  by a representative curve noted   

We can represent the functions by two types of illustrations: 

   

 

Definition (Equality of two functions): 

 are said to be equal if and only if . 

We denote: . 

Definition (Restriction of a function): 

Let be a function  and .The function f is well 

defined on A and we call restriction of  to A, the function denoted 

and defined by  
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Example 

For we have  and . 

Notice 

✓ When there is no possible confusion, it happens that we use the 

notation  to designate . For example, . 

✓ We can also restrict the destination set to a subset of . 

   

Intersections: 

Consider . The intersection of curves .is given by 

  . 

Especially for the intersection with axes we have: 

•  which is the set solution of 

the equation  ; 

• Whether     we have  . 

Exercise 

 Chat graphically according to the value of the parameter  the number and sign of 

the solutions of the equation  for: 

. 

Recall that the "graph" (representative curve) of

 is made up of points on the plane whose 

coordinates are . 
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Correction  

  
a) If  then the equation  admits a negative solution. 

b) If  then the equation  admits a negative solution and a positive 

solution. 

c) If  then the equation  has one negative solution and two positive 

solutions. 

d) If  then the equation  admits two negative solutions and one 

positive solution. 

e) If  then the equation  admits a negative solution and a positive 

solution. 

f) If  then the equation  admits a positive solution. 

 

2) The solutions of the equation  are the abscissas of the points of intersection of 

the curve of  and the horizontal line with equation  : 

      

a) If  i.e.,  then the equation  admits an infinity of solutions 

b) Otherwise, the equation  does not admit solutions. 

1.2. Injection, surjection, bijection  

Definition and characterization of an injective function: 

1) [  is injective]
 

  

   . 

2)  is an injection if and only if  the equation 

admits at most one solution . 

1) The solutions of the equation  are the abscissas 

of points of intersection of the curve of  and 

the horizontal line with equation . 

By varying  and by observing the quoted 

intersections we obtain: 
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Below we represent non-injective functions: 

 

Definition and characterization of a surjective function: 

1) [  is surjective]
 

  

2)  is a surjection if and only if  the equation 

admits at least one solution . 

   

    

Exercise 

Let E and F be two sets. For every relation  with  and  determine 

which are functions, then the domain of definition of each of these functions. Determine 

which are maps and whether they are injective and/or surjective. 

 

Correction  

1 It is not a function. 4 It is a non-injective surjective map. 

2 
It is a function but it is not an 

application. 

5 It is an injective non-surjective 

map. 

3 
It is neither injective nor 

surjective. 

6 It is an injective and surjective 

map. 

We represent surjective and 

non-injective functions  

 

Graphic representation of 

injectives and non-

surjectives functions. 



44 

    

Correction  

  

  

  

Exercise 

Let E and F be two subsets of  and a function . 

the graph of which is drawn opposite. For each choice of  

and  determine if the function is an application and if it is 

injective and/or surjective: 

1.  and ,  2.  and , 

3.  and ,  4.  and 

,  5.  and . 

1.   and ,: 

a) it is a function because any straight line with 

equation intersects the graph offat most 

once, 

b) it is not an application because the line with equation 

 never intersects the graph of f. 

 
2.  and , 

a) it is an application because any line with equation 

intersects the graph of f exactly once, 

b) it is not injective because the line with equation  

intersects the graph of f more than once, 

c) it is not surjective because the line with equation  

never intersects the graph of the function . 

 
3.   and , 

a) it is an application because any line with equation 

intersects the graph of f exactly once, 

b) it is not injective because the line with equation  

intersects the graph of f more than once, 

c) it is surjective because any line with equation 

 intersects the graph of f at least once. 
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Definition and characterization of a bijective function: 

1)  is said to be bijective if it is an injective and surjective 

application. 

2) is a bijection if and only if  the equation

admits a unique solution . 

Below we represent bijective functions: 

 

4.  and  

a) it is an application because any line with equation 

 intersects the graph of f exactly once, 

b) it is injective because the line with equation 

 intersects the graph of f at most once, 

c) it is not surjective because the line with equation  

never intersects the graph of . 

 
5.  and  

a) it is an application because any line with equation 

 intersects the graph of  exactly once, 

b) it is bijective (injective and surjective) because any 

straight line with equation  intersects the 

graph of f exactly once. 
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Exercise 

    

Attention: we can draw inspiration from the graph of  and by considering the intersections of 

this graph with horizontal lines, but this does not constitute a proof! 

Correction  

1.suppose that . The curve  of  is represented above: 

a) ,   : the function f is an application. 

b)  is injective if ; but  so  is not injective. 

vs). is surjective if  the equation  admits a solution (at 

least); but for  the equation  does not admit a solution, so is not surjective. 

2. suppose that  and . 

i) The restriction of to these new sets makes it injective and surjective. Indeed, consider for 

 the equation  : 

 

For everything  the equation  admits a unique solution , SO is 

bijective. 

ii) Reciprocal application  is defined by  

     . 

Exercise 

Let  be a function defined by . 

1. Is  injective? surjective?   2. Show that . 

3. Show that the restriction  with  is a bijection. 

2 3 4-1-2-3-4

4

6

8

10

12

-2

0 1

2

x

yLet be the function  defined by 

 . 

1. suppose that . 

a) Show that f is a map. 

b) Show that f is not injective. 

c) Show that f is not surjective. 

2. suppose that  and . 

i) Show that f is a one-to-one map. 

ii) Find  reciprocal application of . 
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Correction  

Note that f is an application because . 

1. We have   

the equation of unknown  and parameter  admits solutions if and only if the 

discriminant reduces which s realized for . We deduce that: 

has for  (for example) there will be two solutions and therefore f is not injective. 

b) for  (e.g.) there will be no solutions and so f is not surjective. 

 

2. Consider the equation  of unknown   and parameter  : 

a) for  we obtain as solution ;  b) for  it admits solutions for . 

We deduce that the range of  is . 

 

3. From the results obtained above applied to the restriction , the 

equation  has for all  two solutions  and 

. 

We have  SO , then .  

We deduce that so only the solution is admissible and consequently, the 

restriction  is a bijection with . 

Exercise 

Let  be a function defined by  

1. Is f injective? surjective? 

2. Show that the restriction  with  is a bijection and 

calculate the reciprocal function . 

Correction  

1. Note first that f is a mapping because  because . 

a) We have . We note that  (for example) have 

two antecedents and therefore   is not injective. 

b) We have . We note that  (for example) 

has no antecedent and therefore the function  is not surjective. 

2. From the above study, we deduce that the restriction  admits for 

everything  has a single antecedent .  

Consequently  is a bijection with reciprocal mapping defined by 

. 
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1.3. Composition of functions, bijection and reciprocal function 

Composition of functions: 

Let be functions  and . The composite function 

 is defined by:   . 

 

Example:  

1) If  and  SO . 

2) The function  is written as the composite form  with

 and . 

Noticed 

  

Exercise 

Complete the following table (in this exercise we are not interested in the domains of 

definition). 

no. 1 2 3 4 5 6 7 

  ??   ??   

      ?? 
?? 

 ??  ?? ??    

 

Correction  

Recall     

1)   by replacing we get  . 

In general, we do not necessarily have

. In this case, the definition set 

of  is given by: 

. 
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3)    by replacing we get

. 

4)    by replacing we get 

. 

Noticing that  we can write  i.e.  ,  is said idempotent. 

 

2)  by comparing we deduce

. 

5)  by comparing we deduce . 

 

6)  by comparing we deduce . 

7)  we deduce that

. 

We therefore seek  such as . Solving this equation, we get ,

that is . 

Exercise 

Consider the functions from  towards  defined by 

. 

Give the definition set of each of the following functions and write explicitly the 

expression of the composition: 

1)  2)  3)  

Correction  

      

  

, 

Its domain is   

and its range is  . 

, 

Its domain is   

and its range is  . 
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1)  

  

. 

2)  

  

. 

3)  

  

. 

Question: functions  and  are they equal?  

(Answer: no, they have different domain.  is the restriction of  to ) 

Bijection and reciprocal function: 

Consider . 

1)  is bijective if and only if: it exists  such as  

and . 

2) In this case the map  is unique and one-to-one. 

3) The function  is called reciprocal bijection of  and is noted . 

we have  . 

4) Whether  and  are bijective then is bijective 

and we have  . 

, 

Its domain is   

and its range . 
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Example: 

 defined by  is bijective. Its inverse bijection is

 defined by . 

Indeed, we have:  ; 

and . 

Attention: one may discern between    and   . 

To remember: For  the curves representative of  And  are 

symmetrical with respect to the first bisector 

 

1.4. Variations, parity, periodicity 

It is important to memorize the general form of curves for the usual 

functions and even more to know how to read the curve to easily deduce 

the properties of these functions. 

Curves and direction of variations: 

1) A function f is said to be increasing over an interval  if 

   . 

The curve of an increasing function is ascending. 

2)A function f is said to be decreasing over an interval  if 

   . 

The curve of a decreasing function is descending. 
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Exercise 

Plot on the same graphic the curves of the following functions then give their direction of 

variations. (Compare the variation with the linear one, in neighbourhood of ). 

. 

Correction  

 

 
is strictly increasing on .  

(It is linear, f(x) varies proportionally to x.) 

 

is strictly increasing on .  

(Its variation in the neighbourhood of  is slower than a linear 

function). 

 

is strictly decreasing on  and strictly increasing on

.  

(Its variation in the neighbourhood of  is faster than a linear 

function) 

 
is strictly decreasing on  and on . 

 
is strictly increasing on and strictly decreasing on

. 

 

Example :  

If , function 

    

is decreasing on  and increasing on

. 
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Curves and parity: 

1) A function f is pair whether:  

    And . 

The graph of an even function is symmetric with respect to the axis 

(y'Oy). 

 

2) A function f is odd whether: 

    And . 

The graph of an odd function is symmetric with respect to the origin O. 

   

Example:  

   

Exercise 

Study the parity of the following functions? 

. 

Example:  

Function    

is even if .  

It is odd if . 

The cosine function is even 

 
To.: cos(x) b. : cos(2x) c. : 5cos(x) 

The sine function is odd

 
To.: sin(x) b. : sin(2x) c. : 5sin(x) 
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Correction  

1) . 

, the domain of  is symmetric with respect to the origin i.e. 

.and  

 , 

so, the function  is even. 

2) . We have  then 

  

the domain of  is symmetric with respect to the origin i.e.,  and 

 , 

We deduce that the function  is even. 

3) . We have , then 

, the domain of  is symmetric with 

respect to the origin 

 i.e.,  and 

 , 

the function  is odd. 

4) . We have , the 

domain of  is symmetric with respect to the origin and 

 , 

the function  is neither even nor odd. 

Curves and periodicity: 

1) A function f is periodic of period  (or simply p-periodic) if 

     . 

It follows by iteration that: . 
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Exercise 

 Calculate the period of the following functions: 

. 

Correction  

1) . 

. 

2) . 

. 

3) . The function  is - then  is also -periodic 

(simple calculation). 

4) . East -periodic then  is also -periodic. 

5) .We have   -periodic and  -periodic; the 

period of the sum is   

6) . The function  is -periodic so  is -periodic. 

7) . The function  is -periodic and is -

periodic; the period of the product is   

The graph of a periodic function 

repeats every interval of length 

 units. 
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1.5. Translations, expansion, contraction, inversion 

Translations: 

Knowing a function f and its curve , we can deduce 

1)the curve  of  by translating vertically 

of C units (up for  and down for ). 

2)the curve  of  by horizontal translation of 

 of c units (to the right for  and to the left for ). 

 

Expansion, contraction, inversion: 

Knowing a function f and its curve , we can deduce 

1)the curve  of   

a) if , by expanding vertically by a factor  the curve . 

b) if , by contracting vertically by a factor  the curve. 

c) if , by an inversion followed by a dilation or contraction of a 

factor  the curve . 

 

2) The curve  of  

a) if  by contracting horizontally by a factor  the curve . 

b) if  by expanding horizontally by a factor  the curve . 

c) if  by an inversion followed by a dilation or contraction of a 

factor  the curve . 
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Example:  

Consider the function  defined on  by . 

The canonical form of the polynomial of the second degree makes it 

possible to write 

. 

We know the graph of the function defined by . 

      

Exercise 

For each function, draw the representative curve, then indicate the definition set 

(domain) and the image set (range): 

. 

Correction  

  

------------------------- 

The graph  of the function  is obtained from  

by carrying out the following successive 

transformations: 

1. right translation of 1 unit,   

2. axial symmetry with respect to (x'ox), 

   

3. vertical expansion by a factor of 2,  

  

4. translation of 1 unit downwards, 

    . 

 

   and  

 

   and  

 

    and  
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------------------------- 

  

------------------------- 

  

------------------------- 

  

 

    and  

 

    and  

 

    and  

 

,   

 

,   

 

,   

 

,  , . 

 

,  , . 

 

,  , . 

 

 and  

 

 and  

 

 and  
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4th chap.  :  Limits and Continuity 

1 

Limit at a point (intuitive definition): 

Let  be a function. 

1) We say that  admits  for limit at  if the distance between  

and  is as small as we want  as soon as  is close enough to . 

2) We say that  admits  for limit at  whether  is greater 

and greater as soon as the distance between  and  is small 

enough. 

3) We say that  admits  for limit at  whether  is smaller 

and smaller as the distance between  and  is small enough. 

1.1. Notion of distance 

 We define a distance in as following: 

Definition: (distance) 

1) A distance in  is a map  such that 

i)   symmetry 

ii)  separation 

iii)  triangular inequality  

2)  is the norm of . 

 In particular the "Euclidean" distance" is defined in : 

n=1:      

   

n=2: 

 

  

https://fr.wikipedia.org/wiki/Distance_euclidienne
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n=3: 
 

1.2. Notion of limit by neighbourhoods 

We agree to call neighbourhoods of  sets 

  . 

NB: The notion of neighbourhood of a point is very useful in analysis. 

In fact, a neighbourhood of a is any set containing a ball cantered at a. 

In particular a neighbourhood of  is: 

n=1:  Any interval cantered at  and radius :

  

     

n=2:  Any disk cantered at  and radius   

  

       

n=3:  any ball cantered at  and radius   

 . 

      

Limit at a point (rigorous definition with neighbourhoods): 

Let  be a function and . 

1) We say that the limit of  when  tends to  is   

(we write  or ) if: 

for every , there is a neighbourhood of  (interval cantered at ) 

such that . 

 

 

disc in  

 

ball in  
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2) We say that the limit of
  

when tends to  Eis   

(we write  or ) if: 

for every , there is a neighbourhood  of  (interval cantered at ) 

such that . 

3) We say that the limit of  when  tends to  is   

(we write  or ) if: 

for every , there is a neighbourhood of  (interval cantered at ) 

such that
 

. 

1.3. Other limits 

Limits at infinity: 

Let  be a function and . 

1)  if and only if: 

, it exists  such as . 

2)  if and only if: 

, it exists  such as .

        

3)  if and only if: 

  , it exists  such a s . 

4)  if and only if: 

 , it exists  such as . 
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Limits in one direction: 

Let  be a function; in  there are only two possible 

directions to go to a point , hence the two definitions: 

1)  if and only if: 

, it exists  such as  

. 

2)  if and only if: 

, it exists  such as . 

 

Proposition: 

Let  be a function 

 if and only if  any . 
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Correction 

1)  

 

 

2)  ,  and . 

1.4. Limit properties 

Proposition (Unicity of the limit): 

If a limit exists then it is unique. 

 

Property (Operations and Limits): 

Let  and  be two functions defined close to , such as 

 and , then by agreeing in

 that  and  we have 

•  except for the case  (which is an indeterminate 

case). 

•  except for the case  (which is an indeterminate 

case). 

• . 

•  and  close to  then . 

•  and  close to  then  except for 

cases  or  (undetermined cases). 

• If  and , then   

Exercise 

From the drawing give:  

1) the expression of  

2) the limits at the point  and its 

image. 
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Example: 

Let  be a function and  such as . Pose  

. 

If it exists, what is the limit of  in ? 

Correction 

First, let’s calculate separately the limits inside the radical: 

1) We have ; so close to  we have  and then . 

2) Similarly,  then, close to   then  is well defined and 

. 

3)  

4) Finally, the composition rule gives 

 

1.5. Calculation of limits 

Theorem (Comparisons): 

Let  and  be two functions defined close to , as 

and  then 

• if close to  we have 
 

then  . 

• if a function  defined close to  check  

 and    

then for  the limit of  exists and we have 

      . 
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Attention:  the strict inequalities become wide inequalities after passing to 

the limit. For example,  

  

. 

Exercise 

Demonstrate the following limits: 1)   2)  

Correction 

 

1) The curve of the function  is located below the 1st bisector; consequently  so that

. We deduce 

. 

The comparison theorem allows us to deduce  . 

2) We put , then  and we get 

. 

Definition (Equivalence, domination) 

Let  and  be two functions defined on  and . 

1)We say that  is equivalent to  close of  if there is a 

neighbourhood  of  and a function  checking 

  with   . 
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If  does not vanish in , we can write more simply: 

 . We note  . 

2)We say that  is negligible compared to  close of  if there is a 

neighbourhood  of  and a function  checking 

  with   . 

If  does not vanish in , we can write more simply: 

 . We note  . 

 

Properties (Equivalence, domination) 

1) If  and  (which do not vanish close of ) then 

  
  and  .

 

2)   and   then   

Attention: equivalence is not preserved by addition or composition. 

Example:  

1) we have   but  and   

2)  and  but we clearly see that

. 

Examples:(to remember) 

1) For a polynomial function
 

 we have 

    and 

 

 

2)For a rational function  we have 

   and 
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3)Trigonometric functions:  

   

 ,   , . 

 

4)Logarithm, exponential, power functions 

   

, ,  , . 

 

5)For  ("logarithm << power << exponential") 

 

 and . 

Notice:  Note that  
 

; 

hence, to find an equivalent to  it has to be written in the form of 

dominant term   +   negligible term ... 

Example:   because  i.e., . 

Examples:(to remember) 

From the previous remark we can write: 

a) Trigonometric functions:  

   ,   , . 

b) Logarithm, exponential, power functions 

  

, , 

  

and     . 

Proposition (Limit calculation by equivalence) 

If  and  are equivalent close of  and  then 

    . 

Exercise 

Calculate the following limits: 1)
  

2)   

3)  4)  5)   
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6)  7)  8)  

9)  10)   11)  

12)   13)   14)   

15)   16)   17) . 

Correction 

1)  then . 

2)   then  because 

. 

3)   then  . 

4)   then . 

5)   

6)   then . 

6) We recall that   

   . 

7)   then  

 

because  and . 
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8) 

    

9) 

    

10)  

      

 11) 

   

12) Recall that , then

. 
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13) Recall that  then 

    

14) 

     

15) 

     

16) We recall that  

     

17) We recall that   
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2 

2.1. Definitions 

Definition: 

• We say that a function  is continuous at a point   if 

     and  . 

• We say that  is continues over an interval  if  is continuous at 

all points . 

Intuitively:  a function is continuous over an interval, if we can draw its 

graph “without lifting the pencil”, i.e., its curve has no jump. 

Here are functions that are not continuous in  : 

             

CONTINUE LEFT NOT RIGHT       NOR LEFT NOR RIGHT   NOR LEFT NOR RIGHT. 

Example: 

  

Notice:  for every , function
 
is continuous on the left 

and discontinuous on the right. 

Exercise 

  

The integer part function 

 

has a discontinuity in each integer value of  

because 

  

In a game Mario runs and jumps to the right. 

We note x its horizontal position. Its height h 

is described as a function of x by the 

following function (defined piecewise): 
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Show that Mario's path is continuous on the interval [0; 9]. In other words, check that 

the function h is continuous. 

Correction 

For   function  is continuous. 

For   function  is continuous. 

For   function  is continuous. 

For   function  is continuous. 

It remains to check if the successive curves meet, i.e., the function h is continuous at 

,  and . 

 and  so the function h is 

continuous at . 

 and  so the function h is 

continuous at . 

 and  so the function h is 

continuous at . 

Thus, the function h is indeed continuous on the interval [0; 9]. 

Exercise (Discontinuity of the first kind) 

Let f be defined for  by . Is-it extendable by continuity at 0? 

Correction 

One should check if the left and right limits at 0 are equal with the image. We have 

 

Clearly  so the function is discontinuous at 0 and therefore 

cannot be extended by continuity at 0. 

NB:  This kind of discontinuity is said to be of the first kind (limit on the left and 

limit on the right exist but are different). 
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Exercise (Discontinuity of the second kind) 

Let f be a map defined by  . Is-it extendable by continuity at 0? 

Correction 

For  we have  and   

For we have  and   

For two different paths we had two different limits so the limit does not exist. Therefore, 

cannot be extended by continuity at 0. 

NB:  This kind of discontinuity is said to be of the second kind (limits on the left 

and/or on the right do not exist). 

Proposition (Examples of continuous functions) 

The following functions are continuous over their domains: 

- Polynomial functions (they are continuous in ) 

- Rational functions (fraction of polynomials) 

- irrational functions (roots) 

- trigonometric and hyperbolic functions 

- reciprocal trigonometric and hyperbolic functions (arcsin, arccos, 

argsh, argch, arctan …) 

- exponential functions 

- logarithms functions. 

2.2. Continuity and function operations 

The elementary operations (addition, multiplication, division by non-zero 

and composition) preserve continuity. 

Proposition  

Let  and  be two functions defined on an interval , and . 

If  and  are continuous at a, then 

1.   is continuous at a ( ),  2.   is continuous at a, 

3.   is continuous at a,  4.   is continuous if . 

5.If  is continuous at point a and  is continuous at , then  is 

continuous at a. 
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Example: study the continuity of . 

On  function  is continuous and function

 is continuous (composed of two continuous 

functions). So  is continuous (sum of two continuous functions). 

In the denominator  is continuous (polynomial). 

We deduce that is continuous on . 

NB: for a quick answer we will say more simply that the function

 is continuous because it is composed of 

continuous functions (composed in the sense of summation, product, division, composition, 

etc.). 

2.3. Sequences and Continuity 

Proposition (sequential continuity)  

Let  be a function defined on an interval , and . 

 is continuous at a if and only if for any sequence  we have 

. 

Notice: 

This property is intensively used in the study of recurrent sequences

: if f is continuous and  then . 

Consider for example the sequence defined by  and . 

If the sequence  is convergent then its limit  must verify , that 

is . So, the candidate numbers to be the limit of the sequence 

are 0 and 1. 

Exercise 

Let  be a continuous function at 0 such that  . 

Show that f is constant. 

Indication:  for fixed x study the sequence . 

Correction 

Since  we get for fixed  : 



75 

, , , ... 

. 

Note ,  we have  and by continuity of f at 0 we get 

      . 

 being arbitrary, we deduce that . 

3 APPLICATIONS OF CONTINUITY

3.1. Theorem: (intermediate values) 

Theorem: (intermediate values) 

Let  be a continuous function on an interval  of  and  with

, then  reaches all intermediate values between  and 

. 

In other words: 

for any value  between  and  there is a value  such as

. 

 
INTERMEDIATE VALUE THEOREM (LEFT FIGURE), THE REAL C IS NOT NECESSARILY UNIQUE.  
IF THE FUNCTION IS NOT CONTINUOUS, THE THEOREM IS NO LONGER TRUE (RIGHT FIGURE). 

 

Corollary:  

The image of an interval by a continuous function is an interval. 

 

  

Attention :  

It would be wrong to believe that the image of 

interval [a, b] by a function  is either the 

interval  or the interval  

even when  is continuous (see figure). 

For this  will also need to be monotonous 

(increasing or decreasing). 
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3.1.1. Zeros of a continuous function 

 

NB: this theorem just guarantees the existence of a zero when the function 

changes sign.  

For uniqueness we need other assumptions, such as monotonicity. 

Exercise: 

Let  be the function defined by . Show that there 

exists  such that  and . 

Correction 

The function is continuous (polynomial),  and 

; by the intermediate value theorem there exists (at 

least one)  such that . 

Exercises 

1) Show that the equation  admits a unique solution . 

2) Consider the function  defined by . 

Show that the equation  has a unique solution. 

3) Deduce the curve of the following functions from that of , then study the 

number of solutions of the equation  over the interval I specified in each case 

(without solving the equation): 

a)  b)  

c) . 

Fixes 

1) Let be  defined by  then x is solution of the equation if and 

only if . 

This function is continuous  and , so by the intermediate value 

theorem, the function f has at least one root on  which solution of the given equation. 

Bolzano's theorem : (zeros of a continuous 

function)  

Consider a continuous function  on an 

subinterval  of . If  verify  

   

(i.e. have opposite signs), then there is a value 

 such that  

    . 
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Let us show that f is monotone on  to have uniqueness of the solution: 

 therefore the function is strictly increasing on  and 

consequently the solution is unique in this interval. 

2) The function  is continuous on  . 

 i.e., the function is strictly increasing on . 

On the other hand,  and  therefore, according to the intermediate 

value theorem, the function f admits a root (unique because of monotonicity) in . 

3)  

a)  

   

b)  

   

c)  

    

0 1

1

x

y

The function  is strictly increasing on , 

continuous with  and .  

By virtue of the intermediate value theorem, 

the equation  admits a unique solution 

on . 

The function  is strictly increasing on 

, continuous with  and

.  

By virtue of the intermediate value 

theorem, the equation  admits a 

unique solution on . 

i) The function  is strictly decreasing on , 

continuous with  and .  

By virtue of the intermediate value theorem, the 

equation  admits a unique solution on . 

The function  is strictly increasing on , 

continuous with  and .  

By virtue of the intermediate value theorem, the 

equation  admits a unique solution on . 

In summary, the equation admits two solutions on 

. 
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Exercise (crossing continuous curves) 

Consider  two continuous functions from  into  such that  and 

. Prove that it exists such that . 

Correction 

We consider the function  from  into  defined by . 

 is a difference of continuous functions so it is continuous. 

We have  and . We deduce from the intermediate 

value theorem that there exists  such that  i.e., 

. 

Exercise (existence of fixed point) 

Let  be a continuous function from  into . Show that it exists  such 

that  (a fixed point of ). 

Correction 

If  or  the problem is solved.  

So, suppose  so  and  so . 

Consider the function  such as .   is continuous on  with 

 and  therefore it exists  such that 

, i.e.  .  This is a fixed point of the function . 

Exercise (polynomials of odd degree) 

Show that every polynomial of odd degree has at least one real root. 

Correction 

Let the polynomial of degree n be odd 

 

The polynomial function  is continuous. We have  and two cases arise: 

1) :  and  therefore, according to the intermediate 

value theorem, the function admits at least a root in .  

2) :  and  hence by virtue of the intermediate value 

theorem, the function admits at least a root in .  

3.1.2. Dichotomy method (finding zeros of a function) 

This is a simple algorithm for finding a zero of a continuous function  

over an interval of . 

We start with two abscissas  which surround a zero of the function 

(we check by testing the signs of  and : ). 
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At each iteration, we cut the interval into two sub-intervals  and , 

where c is the midpoint of a and b ( ). 

We keep the sub-interval that contains a zero (depending on the result of the test 

 or ). 

Then we cut this sub-interval in two, and so on. 

 

Example: 

For an approximate calculation of  nearly , consider the function . Note 

that  is a root of the function . 

Correction 

 is continuous on [0,2]. Here is an Excel table that gives after 18 iterations . 

The calculations of 

    

are calculated by Excel via formulas. Just gradually 

assign the value of  to  if    

or assign the value of  to  if . 

k ak ck b.k. 
sign of 

f(ak) 

sign of 

f(ck) 

sign of 

f(bk) 
Abs(ak-bk) 

0 0.00000 1.00000 2.00000 -1 -1 1 2.00000 

1 1.00000 1.50000 2.00000 -1 1 1 1.00000 

2 1.00000 1.25000 1.50000 -1 -1 1 0.50000 

3 1.25000 1.37500 1.50000 -1 -1 1 0.25000 

4 1.37500 1.43750 1.50000 -1 1 1 0.12500 

5 1.37500 1.40625 1.43750 -1 -1 1 0.06250 

6 1.40625 1.42188 1.43750 -1 1 1 0.03125 

7 1.40625 1.41406 1.42188 -1 -1 1 0.01563 

8 1.41406 1.41797 1.42188 -1 1 1 0.00781 

9 1.41406 1.41602 1.41797 -1 1 1 0.00391 

In summary we must proceed as follow :  

1. specify the bounds  and  , the desired precision  and give 

the function  for which a zero is researched. 

2. do as long as  

i)  calculate , 

ii) if    then assign to  the value of  ( ),  

iii) else (i.e. ) assign to  the value of  ( ). 

3. Repeat steps i) , ii) and iii) of the previous phase (as long as ). 
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10 1.41406 1.41504 1.41602 -1 1 1 0.00195 

11 1.41406 1.41455 1.41504 -1 1 1 0.00098 

12 1.41406 1.41431 1.41455 -1 1 1 0.00049 

13 1.41406 1.41418 1.41431 -1 -1 1 0.00024 

14 1.41418 1.41425 1.41431 -1 1 1 0.00012 

15 1.41418 1.41422 1.41425 -1 1 1 0.00006 

16 1.41418 1.41420 1.41422 -1 -1 1 0.00003 

17 1.41420 1.41421 1.41422 -1 -1 1 0.00002 

18 1.41421 1.41421 1.41422 -1 -1 1 0.00001 

Exercise 

Show that there is , unique, such that . 

Find the value of x by dichotomy with an accuracy of 1/10. 

Correction 

   

 f(xk) < 0  f(xk) > 0   

k  ak xk = (ak + bk)/2 bk  
Error k = 

abs(bk - ak) 
atan(xk) 

1 0,000 0,500 1,000 1,000 0,0709485 

2 0,000 0,250 0,500 0,500 -0,1477204 

3 0,250 0,375 0,500 0,250 -0,0339284 

4 0,375 0,438 0,500 0,125 0,0197114 

5 0,375 0,406 0,438 0,063 -0,0068164 

6 0,406 0,422 0,438 0,031 0,0065217 

7 0,406 0,414 0,422 0,016 -0,0001289 

8 0,414 0,418 0,422 0,008 0,0032010 

 

The function  is continuous and strictly 

increasing from  onto . 

We have   then by mean of  the 

intermediate value theorem, there exist  (unique 

par monotonicity) such as . 

,  

. 

Take  and . 
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3.2. Monotonicity and injectivity for a continuous function 

Bijection theorem  

If a continuous function  is strictly monotone on an interval of , then

 is a bijective from  onto . 

Moreover, its inverse bijection is continuous and monotone from  

onto and of the same direction of variation as . 

Example 

Let  and  be the function defined by . 

 is continuous and strictly increasing. Moreover  and 

therefore  and  is one to one 

(bijective). 

Its inverse bijection  is denoted:  or also   : it is 

the n-th root function. It is continuous and strictly increasing. 

Exercise 

Let be the function  defined by . 

1) Show the existence of  the inverse bijection of . 

2) Study the monotony and continuity of  and specify its behavior (limits) at the 

bounds of the definition set (domain). 

Correction 

1) The function  is continuous . 

 i.e., the function is strictly increasing on .  

Its image set is .  

Therefore, the function  is one-to-one from  to . 

2)  being continuous and monotone (increasing), according to the bijection theorem its 

converse  is also continuous and monotone (increasing). 

On the other hand,  involves  and  implies 

. 
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3.3. Extreme values theorem  

   

Exercise 

Let be  continuous admitting a finite limit at . Show that  is bounded. 

Does it reach its limits? 

Hint: thanks to the definition of the limit in , we can have a bound on an interval 

; then work on . 

Correction 

Denote  the finite limit in  and recall that  if and only if 

, it exists  such as . 

In particular for  , there exists  such that: 

 if   then   

which shows that  is bounded in . 

It remains to check boundedness on .  is continuous on the bounded closed interval 

, from the extreme value theorem we deduce that  is bounded, so there exists 

 such that  we have:  . 

Therefore,   

    , 

 i.e.,  is bounded in . 

Example: Consider  defined by .  is continuous and has a finite 

limit  at ;  

we deduce from the above that  is bounded in .  is strictly decreasing in , 

consequently  (reached)  and 

 (not reached). 

  

Weierstrass Theorem (of extreme Values) : 

A continuous function defined on a bounded 

and closed interval admits a maximum and 

a minimum on (called "extreme values"). 
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5th chap.  :  Derivations - Approximations 

1 

1.1. Definitions 

Definition: (Derivation) 

• Let be  a non-empty open set. We say that a function  

is differentiable at a point  (or admits a derivative at ) if the 

rate-increase   admits a limit , noted 

, when : 

. 

•  is differentiable on I if it is differentiable at any point  

of . 

• The function  is called derived function of  and is 

denoted  or (in Leibniz notation) . 

 

Theorem: (differentiability implies continuity) 

Let  be a function defined on an open interval  and . 

If  is differentiable at  then it is continuous at . 

If  is differentiable on  then it is continuous on . 

 

Higher order derivatives 

• For  we define by induction the n-th derivative (or derivative 

of order n) of  by setting  then . 

• We say that  is of class  on , and we write , when  is 

n times differentiable on  and the derivative  is continuous on . 

• We say that  is of class  on , and we write , if  is of 

class  on , for every . 
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Exercise 

  

Correction 

We must look for real numbers  and  such that: 

 

Note that  is differentiable on ;   is 

differentiable on  

and  is differentiable on . 

It remains that  must be differentiable at points  and . 

1) For :  

Left derivative:   

Right derivative: 

  

 

So, we must have  . 

2) For :  

Left derivative: 

    

Right derivative:   

Therefore, we must have  . 

We deduce  

We want to extend a parabolic segment by 

two lines, so that the function obtained is 

everywhere derivable (see the opposite drawing). 

Complete the formula below with equations 

of lines: 

 



85 

Exercise 

a. If a cube with sides of 2 cm increase by 1 cm/min, how does the volume increase? 

b. If the area of a sphere with a radius of 10 cm increases by 5 cm2/min, how does the radius 

increase? 

Correction 

a) The volume of the cube with side  is .  We have  (recall that 

) hence 

 
    . 

b) The area of a sphere with a radius of 10 cm  is  . 

,  we deduce . 

Exercise 

A breach opened in the sides of a tanker. Suppose that the petrol extends around the breach 

according to a disc with a 2 m/s increasing radius. How fast does the surface of the oil slick-

disc increase when the radius is 60 m? 

Correction 

Let A be the area of the disc (in m2), r the radius of the disc (in m) and t the time (in 

seconds) elapsed since the accident. 

We want to calculate the rate of increase of the polluted area with respect to time,  

(remember ). 

We will use the relationship:   ; 

The rate of increase of the radius is (given)   . 

Consider the formula :  Deriving with respect to r, we get:    

So that, for  we’ll get   . 

We deduce the variation of the speed of the surface of the oil spill when the radius of the 

slick is 60 m 

. 
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1.2. Derivatives of usual functions 

     

Examples 

1) .  

2) . 

3) . 

4) . 

1.3. Calculation rules for derivatives 

Derivable functions  

• Elementary functions such as polynomials, rational and irrational 

functions, exponential, logarithmic, trigonometric and hyperbolic 

functions are differentiable in their respective domains. 

 

Derivative of compound functions 

• If  and  are differentiable then the composite function 

 is differentiable on its domain and we have 

.
 

or (in Leibniz notation easier to remember) 

. 
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Examples: on domain of U, we have 

1) : .  

2) : . 

3) : . 

4) :  . 

Examples (derivatives of common composite functions) 

  

Rules for calculating the derivative 

• The sum, product and quotient, of differentiable functions is a 

differentiable function over their domains of definition; and we 

have for differentiable functions  and : 

 ,   , 

  ,   ( ). 

• If and  are n-times differentiable then the product  is  

n-times differentiable and we have (Leibniz formula) 

, 

which can be written  
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Examples 

For n = 1 we’ll get    , 

for n = 2, we’ll get    . 

Examples 

Compute the n-th derivatives of  for all n > 0. 

Putting  we get  ,  , … 

Denote  then  ,   and for k > 3, . 

Applying Leibniz's formula, we’ll have 

 

Derivative of the reciprocal bijection 

• If a bijection  is differentiable then its inverse bijection

 (defined by ) is differentiable and we have 

. 

Notice.: 

It is easier to find the formula by differentiating with  : 

. 

2 

2.1. Linearization - Differentiability 

Definition: (differentiability)  

If a function defined on an open interval  admits in a 

neighbourhood of a point 
 
an approximation of order 1 (or linear)  

i.e., that there exists a linear map  such as 

; 

then we say that is differentiable at the point .  

We also talk about linearization of the function . 

NB: remember that  with . 
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Theorem: (differentiability equivalent to differentiability) 

Let be  a function defined on an open interval  and . 

 is derivable at   i.e.,  exists if and only if  

 is differentiable at   i.e., there is a linear map  such as 

   . 

We actually have   . 

Indeed, the existence of the limit 

is equivalent to one of the 

following two writings 

 
or  . 

 

  

Example.1 

 Let , we have , linearization 

, we deduce 

  

Theorem: (linearization or approximation of 

order 1)  

If  is differentiable (differentiable) at  

then we can approximate  close to .by 

a linear expression (approximation of 

order 1): 

    

ATTENTION : Linearization depends on the point 

at which the function is linearized. 

For example, linearizing the function

 gives 

Close to   

  

Close to  

. 
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Simple formula to remember. It makes possible to calculate approximations of 

roots and powers of numbers close to unity. For examples: 

 (with calculator: ) 

 (with calculator: = 

) 

Example.2 

Let , linearization , we deduce 

  

This is the linearization that is performed to solve the pendulum equation in 

physics. 

2.2. Line tangent to a point 

 

Exercise 

 

Correction 

a) Target no 4 will be hit if it is on the tangent to the curve at (1; 3). 

The derivative Is    and the tangent equation is   

. 

For  we have .  Therefore target no. 4 will be affected. 

The straight line which passes through the distinct 

points  and  has as slope 

coefficient . 

Taking the limit, we find that the slope coefficient 

of the tangent is . 

An equation of the tangent at the point  

is then:  . 

The trajectory of an airplane in the opposite figure has 

the equation  . The aircraft fires a laser beam 

along the tangent to its trajectory towards targets placed 

on the x'Ox axis at abscissa 1, 2, 3 and 4. 

a) Will target no 4 be hit if the player shoots when the 

plane is at position (1, 3)? 

b) Determine the abscissa of the plane allowing to reach 

the target no 2. 
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b) For target no. 2 to be hit, the tangent at ( , ?) of the aircraft trajectory must pass through 

target no. 2; therefore, the couple  must verify the equation 

  i.e.  ,  

that is    or again   .  ,  .  

One can deduce the abscissa of the plane-position making possible to reach target no. 2. is 

. 

3 

3.1. Limited Taylor-Young expansion 

Definition: (Limited development) 

Let  and . We say that a function f admits a limited expansion 

(LE) to order n, at point a, if there are real numbers  such 

that for all x close enough to a we have: 

 

We recall that  with . 

✓ The term  is called 

the polynomial part of the LE. 

✓ The term  is the rest of the LE. 

✓ The limited development (LE) if it exists is unique. 

✓ If the function  is even (resp. odd) then the polynomial part of its 

LE at 0 contains only monomials of even (resp. odd) degrees. 

 

Theorem: (Taylor-Young formula) 

Let  be a function is of class  on  and . then for all  we 

have: 

 

The limited expansion of  in the right-hand side of equality is called 

Taylor-Young polynomials. 
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For n=1: we find the approximation of order 1 (linear): 

     . 

For n=2: we find the approximation of order 2 (quadratic): 

    . 

Example 

Let’s look for various approximations of  around the point  

  

Example 

For  and  we have: , , 

, , hence 

   

Note (important):  

The equation of the tangent at the point of abscissa then  is 

. The quadratic approximation (of order 2) makes it 

possible to study the curvature of the curve of the function   

  .  

✓ Approximation d’ordre 1 (linéaire) : 

 

✓ Approximation d’ordre 2 (quadratique) : 

  

✓ Approximation d’ordre 3 : 

 

✓ Linear approximation (of order 1) :  

 

✓ Quadratic approximation (of order 2) : 

   

✓ Approximation of order 3 : 
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So, on an interval  we have: 

✓ If  then the curve of  is below the tangent: concave function. 

✓ If  then the curve of  is above the tangent: function convex. 

The point where there is a change in curvature is called the inflection 

point. To determine it analytically, it is necessary to solve the equation 

and then search among the solutions for those where  changes 

the sign. 

 

Theorem: (Error of the approximation) 

If a function  is  differentiable and  is its Taylor polynomial of 

order n generated by  at , if  is bounded over I by a real 

M i.e., , then : 

. 

Example 

The linearization close to  of  gives . 

What is the precision of this approximation if  i.e., ? 

We have     we deduce 

. 
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4 

We have to retain the following LE at 0 of usual functions: 

 

 

 

Important remarks: 

➢ The LE of  is the even part of the DL of  (we retain the monomials of even 

degree). 

➢ The LE of  is the odd part of the DL of  (we retain only the odd degrees). 

➢ The LE of  is the even part of the DL of  by alternating the sign and . 

➢ The LE  is the odd part of  by alternating the signs and . 

➢ For  there is no constant term, no factorial and the signs alternate. 

4.1. LE of functions at any point 

The function f admits a LE close to a point  if and only if the function 

 admits a LE close to . 

Therefore, we reduce the problem to 0 by the change of variables  
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Examples. 

1. LE of  at . 

We pose  If x is close to 1 then t is close to 0.  

We will look for a LE of   near . 

 

So close to  we get 

   . 

2. LE of  close to . We pose , we have 

. 

 

3. LE of  at a=1 to order 3.  

We set , we have . 

. 

We pose , we have ; we use  

    . 

 

4.2. Operations on limited developments 

Let f and g be two functions which admit LEs at 0 to order n: 

,  

. 
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Theorem: (Sum and product) 

• The TAYLOR polynomial of order n generated for the sum  is 

the polynomial sum ; 

  

• The TAYLOR polynomial of order n generated for the product  is 

the polynomial product  truncated to order n, i.e., that we 

keep only the monomials of degree ≤ n; 

Example. 

We have the LE of order 2: 

   and  then: 

 

 

Theorem: (Composition) 

• If  then the composite function  admits a LE of order n 

at a=0 whose polynomial part is the truncated polynomial at order n 

of the composite . 

Examples: 

1) Calculation of the LE of  at 0 to order 3. 

We put here  and . We have 

    and . 

The LEs:    and  , 

so  

and . 
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Consequently 

 

2) Calculation of the LE of  near 0 to order 4. 

We know the LEs:  and 

 

We put  and . We have 

    and  . 

 

. 

We deduce 

 

Theorem: (Division) 

• By carrying out the division according to the increasing powers of 

by  to the order n we will obtain the writing: 

       with . 

Then Q is the polynomial part of the LE at 0 to order n of  . 

Example 

     

Find the LE of  to order 

2.  

 

From the Euclidian division we 

deduce  
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4.3. Applications of LEs 

4.3.1. Limit calculations: 

1) Calculate .  Let's use the LEs: 

 
 
; 

. 

. 

  

  

  

We deduce   . 

2) Calculate .  We recall: 

 

; 

 

; . 
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We deduce 

 

 

Then   . 

NB: by calculating the LE at a lower order, we could not have concluded, 

because we would have obtained  which remains an 

indeterminate form. 

4.3.2. Equivalences: 

1) Give simple equivalents close to 0 for the following functions: 

a)  b) . 

a)  . We have the LEs: 

 and 

,  

then for  

. 

To order 3 we’ll have  .  

We deduce 

 

So close to 0 we have . 
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b) . 

We know the LEs:  

;  

 and 

. 

We deduce 

 

So close to 0 we have . 

2) Give an equivalent close to  of  . 

Reminder: 

then close to 0 we have 

 

 

 

Noticing that , we deduce that close to  we have 
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Adding these results, we get 

 

So close to   . 

4.3.3. Others: 

Find the tangent of the graph, at point of abscissa , of a function  defined by 

; and specify the position of the graph with respect to the tangent  

Let's use the LE of  at point . , ; then  

 

We deduce the equation of the tangent . 

The position of the graph with respect to the tangent depends on the sign of 

 

which is negative; this means that the graph is below the tangent. 

5 

Definitions  

Let  be a function. We say that  

✓  is bounded in [a,b] if there exists a real  such as  

     ; 

✓  admits a global maximum (resp. minimum) at  if  

     (resp. ); 

✓   admits at 
 
a local (or relative) maximum (resp. 

minimum) if there exists a neighbourhood  of c such that  

    
 (resp. ) 

. 
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Critical (or stationary) point 

Let  be a differentiable function at .  

If  then c is called critical point (or stationary point). 

 

Proposition (extremum implies critical point) 

Let  be a differentiable function in .  

If  has a local extremum at , then is a critical point ( ). 

NB:  If  at a point, then there are two possibilities for this point 

✓ It is an extremum of the function or 

✓ It is an inflection point with horizontal tangent. 

 

Important: The extrema of a function are to be found among the critical 

(stationary) points. 

Proposition (second derivative and classification of extrema) 

Let   be a differentiable function at a critical point 

  

( ) then: 

1) If  (concave curve), the function admits a local maximum at c, 

2) If  (convex curve), the function admits a local minimum at c. 
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Example 

Find the extrema of the function , with a real-parameter , defined by 

. 

The extrema of the function  are to be found among the critical points. The 

derivative is . If c is a local extremum, then we’ll have 

. 

✓ If  then , there are no critical points and so no 

extremums. 

✓ If  then . The second derivative  

vanishes at  and changes sign. Therefore  is not an extremum but 

a point of inflection (change of curvature). 

✓ If  then . There are two critical 

points  and . We have . 

  then  is a local maximum  

  then  is a local minimum. 
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6 

 

 

 

 

Corollary 

Let  be a continuous function on [a, b] and differentiable 

on ]a , b[. 

1.  f is (strictly) increasing; 

2.   f is decreasing (strictly); 

3.  f is constant. 

 

Cauchy's theorem " generalized finite increments". 

Let  and  be two continuous functions on , differentiable on . 

Suppose that  and that  does not vanish on ; then 

there exists  such that: 

. 

Théorème de Rolle 

Let  be a function such that: 

 1. f is continuous on [a; b]  

  2. f is differentiable on ]a; b[ 

  3.  

then it exists  such that  

(horizontal tangent). 
 

Théorème des accroissements finis  

Let  be a function such that: 

 1. f is continuous on [a; b]  

  2. f is differentiable on ]a; b[ 

then it exists  such that: 

. 
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Hospital Rule (IF , ) 

Let  and  be two functions such that: 

1. , 

2.  and  are differentiable nearby , 

3. the derived  does not vanish close to , 

4.  exists. 

Then . 

Important Note 

The rule is also valid if , or if  and . 

Examples 

1. Calculate .  We have an indeterminate form . 

Let's use the Hospital’s rule: set  and . 

 

We deduce     . 

2. Calculate the limit . We apply the HOSPITAL theorem 

 

3. Calculate the limit .  

Let's pose   and  . 

  and  .  remains IF.  
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 and  .   remains IF. 

 and  .   . 

We deduce    . 

Exercise 

Calculate the following limits:  1)  2)   

3)  4) . 

Correction 

 

 

so    

 

   so 

 

    

so 

  

1) . 

 

We conclude   

2)  

 

 

3)  

 

4)  
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7 

We have already seen in the previous chapter the method of bisection or 

dichotomy for the approximate calculation of the zeros of a continuous 

function. This method still works but is not very fast. 

We present here a faster method, Newton's method. 

The principle is as follows: given  a function of class  and  a 

single zero of , i.e.,  and . 

knowing a value  close to , we calculate  by taking the abscissa of 

the intersection of x-axis with the tangent to the graph of  passing 

through the point : 

. 

 

Example (approximate calculation of ) 

We have . Let's find the zero of the function 

 in the interval [0, 2] with a precision of . 

Using Excel, we defined  and  . 

 

k xk I xk -  racine(2) I
0 1,000000 0,414214

1 1,500000 0,085786

2 1,416667 0,002453

3 1,414216 0,000002

We thus define the recurrent sequence 

 

As a stopping criterion, we can choose to stop 

when the iterates are close to each other or 

when the value taken by the function is 

sufficiently close to zero. 



108 

Exercise 

Let's look for a zero of the function . 

Correction 

 and ,  being continuous we deduce that the zero is between 0 and 1. 

Let us take as starting value . The derivative is . 
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6th chap.  :  Usual Functions 

1 

1.1. Power functions 

The power function is defined on  by 

. 

• It is continuous and indefinitely differentiable, we have:

  And 
 
... 

• The variation of depends on the parity of . 

    

• When  is even the curve is a parabola symmetric with respect 

to the axis (y'oy). 

The axis (x'ox) is a horizontal tangent: Function  is even and 

has an extremum. 

• When is odd the curve is symmetrical with respect to the 

origin. 

The axis (x'ox) is a horizontal tangent which crosses the curve:  

Function  is odd and has an inflection point at the center 

of the symmetry (0,0). 

 

To remember : 

• 
  

i.e. sequence 
 
is decreasing and tends to 0. 

•  

i.e. sequence
  

is increasing and tends towards . 
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Exercise 

  

Correction 

To determine a, it suffices to fix a point  of the curve and replace its 

coordinates in . 

1) ,   2) , 

3) ,   4) ,  

5) inverse of C2: ,   6) inverse of C3: . 

1.2. Quadratic polynomial function 

The quadratic polynomial function is defined on  by 

. 

Canonical form: Let be ,  and put . , we have: 

 

We deduce   . 

Note that, by making a translation of the reference  we get a new reference 

 with . 

 

Each of the following six parabolas is the 

graphical representation of a function of the 

type . Determine, for each of 

them, the value of the real a. 
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Exercise 

Plot in the same Cartesian plane the graph of the functions defined by 

,  , , . 

Correction 

: parabola (Pf). 

: parabola (Pg)= translated 2 left 

units of (Pf). 

: parabola (Ph) = translated 5 

units down from (Pg). 

: 

parabola (Pk) =translated from vector of (Pf). 

Notice: We can deduct from the curve of  the existence of the 

roots and the sign of the polynomial . We can also see the 

intervals of monotony as well as the extremums. 

 

This corresponds to the change of variable 

     

then the equation of the curve becomes simpler: 

  . 

So, one easily deduce the curve of . 

Notice : We can see that the curve of 

    

is the translated of that of known curve of 

    

with a translation vector . 
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1.3. Sign of the 2nd degree polynomial 

We consider the discriminant . 

 

 

 

Notice:  when  we have  and 

     , . 

Exercise 

Find all the solutions in  of the following inequalities: 

1)   2) . 

Correction:  

1) 

      

 

  

analysis 
,

,   

,

,   

Solutions by 

intervals 

 

 

 

 

Solutions  

1. If :   admits a double root . 

      

 (+a) sign (+a) sign 

 

2. If :  has two distinct roots: 

  and   . 

Noting  and  we have 

     

 (+a) sign sign of (-a) (+a) sign 

 

3. If  :  does not admit real roots. 

      

 (+a) sign 
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2)Let us first simplify the expression : 

     
 

 
 

  

 

 

 

  

 

    

inequality 

 

i.e.,

 

 

i.e.,

 

 

i.e.,

 

 

i.e.,

 

 

We will distinguish the different cases to solve the inequality: 

i)  If   the inequality is   : 

,  ,  . 

     
 

  

 - + - 

Solutions No solutions   

 

ii)  Whether    the inequality is  : 

,  ,  . 

   
 

 
 

  

 + - + 

Solutions  No solutions  

 

iii)  Whether    the inequality is  : 

,  ,  . 

 

 
 

 
 

 
  

 + + + 

Solutions    

 

iv)Whether the inequality is : , . 

  

 
 

 
 

 
 

 

+ - - 

Solutions   No solutions 
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We deduce the set of solutions of  is  

     . 

2 

The inverse function of power is defined on  by 

. 

• It is continuous and indefinitely differentiable on , we have:

 

 

 
... 

• Its graph is a hyperbola equilateral having the axes as asymptotes. 

• The variation of depends on the parity of . If  

then  decreasing on  and growing on .  

We deduce by inverting: 
 

. 

•  

   

Exercise 

Find all the solutions in  of the following inequality: 

. 

Correction 

Note  the inequality, then  is defined if and only if  in this case we have 
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We deduce the set of solutions of : . 

3 

If  [resp. ], function  is 

bijective from  to  [resp. from  to ]. 

• Her reciprocal is the n-th root function denoted   

• In we have:  
 

. 

This remains true in    when  . 

 

 

 

Important: 

• If  is odd then    

• If 
 

is even then 
 
 

Exercise 

1) for real a and b solve . 

Note the tangent to the origin.  is not 

differentiable at 0. Why? 
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2) for real a and b complete the following implications  . 

Correction 

1) for a and b real, we have: 

➢ , 

➢  , 

➢ , 

➢ . 

2) for a and b real, we have: 

 because the function  is decreasing for  and 

increasing for . 

  because the function is increasing on. . 

Exercise 

solve in :  1)   , 2) . 

Correction 

1) , 

, ,  . So   is the unique solution of the equation. 

2) . 

Note that  is solution of the equation, Euclidean division by  deal to 

. 

, so  is the unique solution of the equation. 

Exercise 

solve in :  1)   , 2). . 

Correction 

1) The function  being increasing we have 

, 

we deduce   . 

2) The function  being increasing on  we obtain 

, 

hence the set of solutions of the inequality is . 

Exercise 

Let  be the function defined by . 
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Give its definition set  and study the sign of  for .  

Correction 

1) . 

 , ,  then . 

On the other hand,  . 

We deduce the definition set of the inequality: 

. 

For , multiplying and dividing by the conjugate we get 

. 

The denominator being positive, the sign of  is the same as In . We deduce: 

; 

; 

. 

Exercise 

solve in : 1) ,  2) ,  3) . 

Directions 

First find the domain of definition. 1) Leave a single radical to the left of the inequality 

then square to get rid of a radical. For the second you can do the same or multiply and 

divide by the conjugate expression then study the sign. 

2) Study separately the signs of the numerator and the denominator; summarize in a table 

and deduce the sign of the fraction. 

3) Get rid of the radical by an equivalence; we will obtain a system of inequalities to solve 

separately then consider the intersection. Pay attention to the absolute value which 

requires a separation of cases. 

3.1. Rational exponent power 

Definition: 

We can extend the power function to : 

      and  . 

Especially   and . 
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4 

 To correctly handle circular sine functions, cosine tangent... it is 

imperative to know how to work with the trigonometric circle (to simplify, 

it will be noted ). It is the circle cantered at the origin of the reference 

(orthonormal) and of radius the unit of the reference. 

Consider the point  which will be origin for the arcs of .  

For  we associate a point  such as  . 

 

 

From the trigonometric circle we can see the following for any   

4.1. Sine function: 

Definition and properties: 

•  is the ordinate of the point ; 

•  is increasing on ; 

• periodical i.e.  ; 

•  is bounded: . 

• , , . 

•  is continuous and differentiable on : 

    . 
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4.2. Cosine function: 

Definition and properties: 

•  is the abscissa of the point ; 

•  is decreasing on ; 

• periodical i.e. ; 

• is bounded . 

• , ,  . 

•  is continuous and differentiable on : 

   . 

 

• The Pythagorean theorem shows that 

  . 
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Exercise 

The evolution of the population P of deer is modelled by the function: 

 

where t is measured in years. 

a. What is the period of the function P(t)? 

b. When in the year is the population at its peak? What is the population at that time? 

vs. Is there a minimum? If yes, when? 

Correction 

a. Let T denote the period:

, 

b.  

. 

0  1/2  1  3/2 

 
 

 
 

 
 

 

the population peaks in the middle of each year: . 

Note: a minimum is reached at the beginning of each year, i.e., 

. 

4.3. Tangent, cotangent function: 

Definition and properties(tangent): 

 

 

•   

• It is is continuous and differentiable on  

   . 

•  is increasing on ; 

• periodical i.e. 

 ; 

•  is not bounded:      

and   .  
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Comparisons: 

  and then. . 

We deduce   i.e.   close to 0. 

4.4. Trigonometric values of particular arcs 

One must know the sines and cosines for certain particular arcs (or angles) 

(expressed in radians) and know how to deduce from the trigonometric 

circle the variations and signs of the basic circular functions. 

  

Exercise 

solve in : 

1) ,  2) , 3) , 4) . 

Definition (cotangent): 
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Correction 

  

     

3) We restrict the study to . Let's study the sign of . 

 

and . 

 

and . 

From the trigonometric circle we see that: 

           
 

 

     

 

     

 

     

 

We deduce  . 

In  : . 

4) We restrict the study to . Let us find the domain of definition D. 

; hence for  we have 

. 

The set of solutions is .  In  the set of solutions is  . 

1) The function  is even,  we restrict the study to  . 

. 

From the trigonometric circle we see that: 

. 

In : . 

 
2) ) The function  is even, we restrict the study to  . 

We pose ,    will be 

.  , , ; then 

. 

. 

From the trigonometric circle we see that 

. 

In : . 
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4.5. Trigonometric relations: 

Note 1:  We must know the formulas of basic transformations. 

 

    

(2) By replacing in (1) by we obtain 

 

(3) By replacing in (1) by we obtain 

 

(1) Basic things to remember 
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(4) Summing (1) and (2) then putting And we obtain 

 

(5) From (4) we deduce 

 

 

By setting we get  

 

5 

5.1. arc cosine 

 

  

Arc cosine function: 

 

The restriction 

  

is a bijection 

    

Its inverse bijection is the function 

arccosine. 
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• Itis continuous on  and differentiable on , we have 

. 

Proof:  We have , by differentiating we’ll have 

     

then,  . 

5.2. arc sine 

 

         

Arc sine function: 

 

• It is continuous on  and differentiable on , we have 

. 

5.3. arc tangent 

 

The restriction  

 is a bijection 

Its inverse bijection is the 

function arsinus. 

The restriction 

 is a bijection 

Its inverse bijection is the 

function arctangent. 
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Tangent arc function: 

 

• It is continuous and differentiable on , we have 

. 

Remember: 

 

6 

6.1. Logarithm 

Definition and properties: 

• There is a unique function, denoted  such as: 

 and . 

It is the primitive of  which vanishes at point 1: 

   . 

•  is a continuous, strictly increasing function and defines a 

bijection between  and . 
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•  is a concave function and . (the line defined by  is 

the tangent to  at the abscissa point 1) 

 

Algebraic properties: 

This function verifies (for all  ): 

1. , 2. , 

3. ,  especially  

Notice: according to 3. we can extend property 2. to the exponents of : 

     

Exercise 

Simplify the following expressions:

 . 

Correction 

. 

. 

. 

Exercise 

solve in : 

1) ,  2) . 

Correction 

1) , the equation is defined if and only if  and ; in this case we 

have 

. 
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We pose , we’ll get , , ,  then 

    . 

We deduce   (we 

have ). 

2) , the equation is defined if and only if  i.e., 

;  

in this case we’ll have 

 

, ,  then  ;
 

so the inequality has no solution. 

6.2. Logarithm of base a>0 

 is called the natural logarithm. It is characterized by . 

We define the logarithm of base a≠1 by 

 

so that . For a=10 we’ll get the decimal logarithm   

. 

   

Examples:  

1) pH. measures the acidity of a solution. The pH of a solution is defined by

 ( denotes the molar concentration of ions  of the 

solution. The lower the pH of a solution, the higher its concentration of ions is 

and more acidic is the solution). 
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2) In computing, the logarithm in base 2 also intervenes: . 

Exercise 

In acoustics, the intensity of a sound is measured in decibels  where J is the 

acoustic power of the sound (in ) and  is the lowest power audible to a human at a 

frequency of 1 kHz ( ). 

The range of intensity perceptible to the human ear goes from 0 dB (the lowest audible 

power by a human being) to 120 dB which corresponds to the pain threshold. Here is the 

intensity of some sounds: 

Sound of tree leaves 10dB Ordinary conversation 65dB 

Whisper 20dB Jackhammer at 3m 90dB 

Car 50dB limit of pain 120dB 

Knowing that a loudspeaker with a power of Q watts placed at a distance of R meters 

from an observer develops an acoustic power of . 

1) Calculate the intensity of the sound. 

2) If the loudspeaker power is  calculate the intensity of the sound perceived by 

an observer located at a distance of 1m. What do you notice? 

3) what about for a distance of 10m. 

Correction  

1)  

2) If And SO .  

The pain threshold of the human ear is exceeded. 

3) If  and  then  which already 

exceeds the intensity of the jackhammer at 3m (see table above). 

Exercise 

solve in : 

1)  2)   3) . 

Correction 

1) : the inequality is defined for . 

 

a) If  then  and  , so the problem has no solutions in this 

case. 
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b) If  then  and ,  

the solution set of the problem is . 

2) : the inequality is defined for , . 

. 

3) : the inequality is defined for , . 

, the solution set of the problem is 

     . 

6.3. Exponential 

Definition and properties: 

• The reciprocal bijection of    is called the denoted 

exponential function . 

•   is a continuous and indefinitely differentiable function

  And . 

•  is a continuous, strictly increasing function and defines a 

bijection between  and . 

•  is a convex function and . (the line defined by  

is the tangent to  at the abscissa point 1) 
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Notation: (  and ) 

If  then:  .  

We will denote for all . 

Algebraic properties: 

For every : 

1. , i.e.  

2. , i.e.  

3.   especially  .
 

Exercise 

The number of bacteria  contained in a culture at time t (expressed in days) is given 

by  where  is the initial number of bacteria and a coefficient 

depending on the type of bacteria and the surrounding environment. 

The number of bacteria in a culture was estimated at 200,000 after 3 days and 1,600,000 

after 4.5 days. 

a. What is the bacteria count after 5 days? 

b. When does the culture contain 800,000 bacteria? 

Correction  

a.   and  , we deduce 

  then ; Hence . 

 We get  . 

The number of bacteria after 5 days will be . 

b. ,  

we deduce   

Exercise 

Any radioactive body disintegrates over time. The number of radioactive atoms at 

time t (in years) is given by  where  is the number of radioactive atoms 

at time  and  a coefficient depending on the material. 
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All living beings contain a constant proportion of carbon 14 atoms (a radioactive isotope 

of carbon), i.e.,  C14 atoms per 12 g of carbon. When it dies, the C14 atoms begin 

to decay according to the law stated above, with . 

To estimate the age of an object of animal or vegetable origin, it is therefore sufficient to 

evaluate the number of C14 atoms contained in 12 g of carbon taken from this object. 

a. We discover a vegetal remains containing  C14 atoms per 12 g of carbon. 

How old is he? 

b. One calls period or half-life of a radioactive element the time necessary for the 

disintegration of half of the initial number of radioactive atoms. 

Determine the half-life of carbon-14. 

Correction  

a. We have .  

We deduce   . 

b. We have .  

We deduce   . 

6.4. Basic exponential a>0 

  

Exercise 

The Beer-Lambert law states that the amount of light  which penetrates to a depth of x 

meters in the ocean is given by  with  and  is the amount of light 

at the surface. 

a. Express x in terms of decimal logarithms. 

b. Whether , calculate the depth at which  (this determines the area 

where photosynthesis can take place). 

Definition: 

For we define 

. 
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Correction  

a. We have , so , we deduce . 

b.  and  then . 

6.5. Power at real exponent 

Definition: 

For  we define 

   

 

Algebraic properties: 

For every : 

1.  , 2.  ,3.  

  4.  , 5. . 

6.6. Gaussian functions. 

  

  It is widely used in probability. 

7 

7.1. Hyperbolic functions 

Definitions: 

We define the functions hyperbolic cosine, hyperbolic sine and 

hyperbolic tangent for every  by, respectively 

 

Definition: 

The Gaussian function is defined 

on  by 

       . 
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Properties: 

• Function  is even while the functions  and  are odd. 

For every we have 

•  

 

Derivation: 

Functions ,  and  are differentiable on , we have: 

•  

•  
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Exercise 

Show that . 

Correction  

 

7.2. Inverse hyperbolic functions 

Definitions: 

Function hyperbolic sine argument defined on  is the inverse 

bijection of the function . 

We note  .  

Function hyperbolic cosine argument defined on  is the 

inverse bijection of the function . 

We note . 

Function hyperbolic tangent argument defined on  is the 

inverse bijection of the function . 

We note . 

 

Properties: 

• Functions  and  are odd. 

For every  we have 
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Derivation: 

• Function  is differentiable on , we have:

  

• Function  is differentiable on , we have:

  

• Function  is differentiable on , we have:

  

•  

Reminder: . 

    .   

 

 


