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This course is intended for students in the first year of a Bachelor's
degree in Engineering Sciences. Its objective is to provide basic mathematical
tools for this sector.

Elementary numerical functions as well as equations and inequalities
with a real variable correspond to the secondary school and are assumed to
be known.

This manuscript is based on other books (partially, with or without
modifications) like polycopids of Gloria Faccanoni, books of Herbert Amann
and Joachim Escher in anlysis and others.

In this document are included many corrected exercises to show the
interest and omnipresence of Mathematics in the various sciences (physics,
economics, etc.).



Nolations in Maths

Usual sets in mathematics

N : set of natural numbers

N* : set of natural numbers without zero

7. . set of relative numbers (positives, negatives or zero)

7. . set of relative numbers without zero (positives or negatives)
Q : set of rational numbers (% such that p € Z and p € N¥)
R
R
R

. set of real numbers
*

. set of complex numbers

Intervals
Inequalities Corresponding set
a=x=bhb [a, b]
a<x<bh la, b
a=x<b [a, b
a<x=bh la, b
Xz a [a, +o0]
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Chap 1: Derivations and Approximations

1 DERIVATION

1.1. Definitions

Definition: (Derivation)

Let be I C R a non-empty open set. We say that a function f : I — R
is differentiable at a point x( (or admits a derivative at xy) if the

A flx) = flzo
rate-increase ﬁ(f) = ( ; 13( ) admits a limit Ar — 0, noted
r — X

f'(xg), when Az — 0;

f’(l‘o) = lim M — lim f(xo+h) — f(ID)

T—To T — Ty h—0 h
f 1 — R isdifferentiable on I if it is differentiable at any point of 1.
The function x € I — f'(x) is called derived function of | and is

denoted f' or (in Leibniz notation) %

Theorem: (differentiability implies continuity)

Let f be a function defined on an open interval I C R and zy € I.

If f is differentiable at xg then it is continuous at .

If f is differentiable on 7 then it is continuous on /.

Higher order derivatives

For n € N we define by induction the n-th derivative (or derivative
of order n) of [ by setting f) = f then f*) = (f("-DY,

We say that f is of class C" on I, and we write f € C"(I), when f isn
times differentiable onl and the derivative f™ is continuous on I.

We say that f is of class C™ on I, and we write [ € C>(I), if [ is of
class cn ONn g, for every , - N-

1



Exercise
We want to extend a parabolic segment by :

two lines, so that the function obtained is \
everywhere derivable (see the opposite drawing). |
Complete the formula below with equations \
of lines:

......... for v < —1
22

f(CE) = 5 —2x for —1 S T § 3 3 z
......... for x > 3

Correction

We must look for real numbers ¢ and & such that :
a(r+1)+2,5 forx < —1
x

flx) = 5—23@ for =1 <2 <3
bx —3)—1,5 forx>3
2
T
Note that z — a(x + 1) + 2.5 is differentiable on | — 00, 1[; T - 22 is differentiable on | — 1, +3][
and z — b(x — 3) — 1.5 s differentiable on | + 3, +00].
It remains that f must be differentiable at points — 1 and —+3.
1) For xp = —1:
() — 2.5 a(lz+1
Let derivative : lim M = lim u =a
- x<—1 1 €T+ 1 " x<—1 1 r —+ 1
Right derivative.:
1) — 25 74222 - 5/2 lat -4z -5 1(z—5)(z+1 1
lim flw) - 25 = lim v/2- -5 — im0 Le=5)etl) = lim —(z-5)=-3
222N r+1 .| r+1 12 141 r—-12 41 z—-12
So we must have a4 = —3.
2) For zp = +3:
Leit derivative :
r)+15 12/2 - 20+ 3/2 12? 4o +3 l(z=1)(x-3
lim flo)+ = lim ”—i+/ = lim STt lim - m = lim - (z-1)=+1
pSoag T 3 z——1 -3 —=+32 -3 7--12 -3 —+3 2
() + 1.5 bz — 3
Right derivative_ lim M = lim M =b
EN T+ 1 z=+3 x — 3
Therefore, we must have h=+1.
We deduce
—3(z+1)+2,5 forx<-—1 —3x—0,5 forx< -1
2 2
flx) = %—23: for -1 < <3 = %—2:}: for -1 <2 <3
+1(zx —3)—1,5 forax >3 r—4.5 for x > 3



Exercise
a. If a cube with sides of 2 cm increase by 1 em/min, how does the volume increase?
b. If the area of a sphere with a radius of 10 cm increases by 5 cm2/min, how does the radius increase?

Correction

a) The volume of the cube with side x is © = 3, We have ﬁ ~ d_t (recall that d_ — hm A_) hence
At dt dt At

Av dv dv dx , Ax

—r—=— ., — &3 — =3(2)?.1=12 em?/min.

At S dr drdr 0T Ay @) em” fmin
b) The area of a sphere with a radius o 10 cm 7 is § = 4712,
As ds ds dr Ar Ar 5 5 1
—_— R — = — , — &~ 87 L = 0, dd S — = — = = — cm/min-
AT d T dr A YT AT o deduee A Sar 810 16 MM
Exercise

A breach opened in the sides of a tanker. Suppose that the petrol extends around the breach
according to a disc with a 2 m/s increasing radius. How fast does the surface of the oil slick-

disc increase when the radius is 60 m?

Lorrection
Let A be the area of the disc (in m2), r the radius of the disc (in m) and { the time (in seconds) elapsed since the accident.
AA dA (rememhe[_ dA — lim A A)
dt ~ ot At
dA dA dr ir
We will use the relationship: E TS : the rate of increase of the radius is (given) T 2 m/s.
. L dA dA
(onsider the formula A = 7 r2: Deriving with respect to r, we get: T = 2. So that, for » = 60 we’ll gel I =107
We deduce the variation of the speed of the surface of the oil spill when the radius of the slick is 60 m
AA dA .
— &~ — = 1207 . 2 = 754 m?/s.
At dt " s m/s

1.2. Derivatives of usual functions

:_rrrjr = nx1

(tan(x))' = "'-c]‘-’l'_r] =1+ tan®(x)
(eF) = ex s2 .]

(arcsin(x))' =
(a®) = a*In(a) o

[ v P 1

arccos(x)) = — .
(n() =1 (arccos(x)) = — 7=

N . 1

(sin(x))’ = cos(x) (arctan(x))' = ;=
(cos(x))" = — sin(x) (sinh(x))" = cosh(x)
i nr 1 — 2 )’ "
(tan(x))' = = = 1+ tan”(x) (cosh(x)) = sinh(x)



Examples

1y’ B e L, =1
1)(;) :(‘T l)I:_lm = 22?.
! -1
—(pl/2) 1 1/2-1 1 12
2) (Vi) = (&%) =4at i = o S
S)OIER :(xa)f: (emlna:)f:ealnrs Xaé _a%‘rﬂ_@a:(xl.

4) (25”)’r = (e 1“2)’ =e*"2 xIn2=1n2.2"%
1.3. Calculation rules for derivatives

Derivable functions

e Elementary functions such as polynomials, rational and irrational
functions, exponential, logarithmic, trigonometric and hyperbolic
functions are differentiable in their respective domains.

Derivative of compound functions

e If f and u are differentiable then the composite function
z — (fou)(z) = f(u(z)) is differentiable on its domain and we have

(fou)(x) = [f(u(@)] =u'(x) x f (u(x)).

or (in Leibniz notation easier to remember)

d(f ou)(w) _ dlf (u(@))] _df(u) du
dx dx du “dx’

Examples : on domain of U we have

/

Doy - ek U A () =0 @) =10 00w = 58
2) Dy = {z €R : Ulz) > 0): ( U(:f:)), = (U'2()) = %U’(‘f’) U (@) = 5 - éf()f

!

3)Dy={zecR : Ux)>0: ackR, (Ux) =al (z)U* ().

4) Dy = R: (sin U(:r.)), = U'(z) cosU(x).




Examples (derivatives of common composite functions)

(LFEN™) = nlf (1" f1(x) (tan(F () = ity = 1+ tan (£ ()
{E.f[x:]' = el 1 (x) [arcsin(f[.ﬂ:':'r = E{I?ﬁ

{mrjl-‘, :Ir = gf®) In(a) f'(x) [arcccﬁ[_f[x]]l]r = —ﬁ

[In( f[JL]]I = J ) [arctan(f[_rj]}' = ]—_%-r

(sin(f(x))) = f’l{x] cos(f(x)) (sinh(f(x))) = f'(x) cosh(f(x))

[cosi FIxN) = — F'[x)sin( F(x)) [cosh(f(x))]' = f'(x)sinh(f(x))

Rules for calculating the derivative

The sum, product and quotient, of differentiable functions is a
differentiable function over their domains of definition; and we have
for differentiable functions f, g and X € R:

(f+g9)=f+g, (fxg)'=fxg+ fxg ,

(g)’— [X9 —TXG oy s

Ax fY =Ax[f , p

If fand g are n-times differentiable then the product (fg) is
n-times differentiable and we have (Leibniz formula )

(n) n n— n n— mn
(f-8)" =F" g+(1)f‘ ”-g“*+---+(k]ff V8Bt fog™

Eﬂ} —k k
which can be written Z( fln. gt
k=
Examples
For n = 1 we’ll get (f.90=f .9+ .4,
for n = 2, we’ll get (f.9)"=f"g+2f.d+7.9"



Examples

Compute the n-th derivatives of exp(z).(z* + 1) for all n > 0.
Putting f(r) = exp(z) we get  f'(r) =exp(z),  f"(z) = exp(), ...
Denote g(z) = > + 1 then g'(x) =2z, ¢"(r)=2and fork > 3, ¢ (z)=0.
Applying Leibniz's formula, we’ll have
exp(e). (12 41) = (f.0)" = f0 g4 f0 g0 g #0284 03 g (b sin®e cos”
= expr (o’ + 1) +expr.(2) + expa.(2)
= (2" 4+ 1)¢" + 206" +26" = (1 + 20 4 3)¢"

Derivative of the reciprocal bijection

e If a bijection f : E — I is differentiable then its inverse bijection
f ' F — E (defined by y = f~'(x) < = = f(y)) is differentiable and we have

—1(\ — d_y — L : ! = !
(@) =, de — f'y) (@)
dy

Noftice.:
It is easier to find the formula by differentiating [ (q(ﬂi)) =zwithg=["':

"=z "(2)x f'(g(x)) = L) = ¢(x) = : = :
ot =l = g5 o) =1 o= (57 =)= G =

2 FIRST-ORDER APPROXIMATION

2.1. Linearization - Differentiability

Definition: (differentiability)

If a function fdefined on an open interval [ C R admits in a
neighborhood of a point xq € I an approximation of order 1 (or linear)
i.e. that there exists a linear map x € V,, — L(z) such as

fle) = L(z) + oz — x0);

then we say that fis differentiable at the point x.
We also talk about linearization of the function f.

AB:remember that o(z — x¢) = (v — xg) €(x — o) With ¢(z — 25) —— 0.

r—T0

6



Theorem: (differentiability equivalent to differentiability)

Let be [ a function defined on an open interval [ C R and zy € 1.

fis derivable at zq i.e. f'(xg) := lim flwo+ h’})l PAG)
L—

f is differentiable at zy i.e. there is a linear mapx € V,, — L(z) such as
f(x) = f(xo) + L(x — x9) + o(x — x¢).

exists if and only if

We actually have L(x —xq) = f'(x0) (x — x0).

Indeed, the existence of the limit f/(x) := lim f@) = J@o) _yp, J@oth) = flzo)

T—=To T — X h—0 h

is equivalent to one of the following two writings

f@)= flao) +f'(ao) (= x0) +0(z = 20) or  flzg+h)=f(zg) X h+ flzg) + ofh)

|| Theorem: (linearization or approximation of order 1)

If f is differentiable (differentiable) ' Curve
at xy then we can approximate f(x)

close to z.by a linear expression A oot

(approximation of order 1) : Fo)

f(x) = flxo) + f'(x0) (v — x0)

ATTENTION : Linearization depends on
the point at which the function is
linearized.

For example, linearizing the function
r — f(z) =1+ x gives

Close to zg = 0

f@) = f(0) + f(0) (z = 0) = 1 + 52

Close to g = 3




Example. 1

Let f(z) = (L +2)", we have f'(z) =n (L +2)"!, linearization f(z) =~ £(0) + f/(0) (z — 0),
we deduce

(I4+2z)"~14+nz pourz<<1

Simple formula to remember. It makes possible to calculate approximations of
roots and powers of numbers close to unity. For examples :

V12 =(1+ 0.2)% ~ 14 £(0.2) &= 1.066... (with calculator : /1.2 = 1.062...)

(1.002)%9 = (1 +0.002)'%° ~ 1 4 100 (0.002) = 1.2
(with calculator : = (1.002)'% =1.22...)

Example.2

Let f(z) = sin, linearization sin(x) & sin(0) + cos(0) (z — 0), we deduce

sin(z) ~x  pour r << 1

This is the linearization that is performed to solve the pendulum equation in
physics.

Line tangent to a point

The straight line which passes through the
distinct points (zg, f(x)) and (z, f(z)) has as
slope coefficient M

T — Tp
Taking the limit, we find that the slope
coefficient of the tangent is f'(x).

An equation of the tangent at the point
(z0, f(z0)) is then:

= 1'e0) & — a0) + fla).




Exercise

The trajectory of an airplane in the opposite figure has the
2r+1

equationy = . The aircraft fires a laser beam along

the tangent to its trajectory towards targets placed on the x'Ox

axis at abscissa 1, 2, 3 and 4.

a) Will target no 4 be hit if the player shoots when the plane s

at position (1, 3)?

i

b) Determine the abscissa of the plane allowing to reach the o o o o

Correction

a) Target no 4 will be hit if it is on the tangent to the curve at (1; 3).
2. —2x+1).1 -1

The derivative Is y' = = = and the tangent equationis y = f'(1)(x — 1)+ 3 = —x + 4.
Forx = 4wehawey = —4 + 4 = 0. Therefore target no. 4 will be affected.
b) For target no. 2 to be hil, the tangent al (), ?) of the aircraft trajectory must pass through target no. 2; therefore the couple
: —1 2x9+ 1
(x;y) = (2:;0) must verify the equation yy = f'(z0)(x — x0) + f(x0) ie. 0 = o) (2 —x0) + Z .
0 Lo
24+ 222 + —1+£+/5
thatis 0 = 5 il + Yo 5 il or again 23:3 +220—-2=0. A'=5 1, = —\[
x T 2
0 0
—1++/5

One can deduce the abscissa of the plane-position making possible to reach target no. 2. is xy =

2

3 HIGHER-ORDER APPROXIMATION

3.1. Limited Taylor-Young expansion

Definition: (Limited development)

Let a € I and n ¢ N. We say that a function [ admits a limited expansion

(LE) to order n, at point a, if there are real numbers cy,c1, ..., ¢, such that

for all x close enough to a we have:
fa)=a+a(z-a)+ar-a*+alr-0*+. +e(r-a)"+ol(r-a)]

We recall that o[(x — a)"] = [(z — a)"] e(x — a) With e(x — a) — 0.

r—a



v Thetermcy+ci(z—a)+c(r—a)f+e3(z—a) +..+c,(v—a)" is called the
polynomial part of the LE.

The term o[(x — a)"] is the rest of the LE.

The limited development (LE) if it exists is unique .

v' If the function f is even (resp. odd) then the polynomial part of its LE
at 0 contains only monomials of even (resp. odd) degrees.

Theorem: (Taylor-Young formula)

Let f be a function is of class C" on I and a € I. then for all z € I we
have:

"a "l (g
fla) = flay 1) -apr o et D o 20 ey

The limited expansion of f(x) in the right-hand side of equality is called

Taylor-Young polynomials.

For n=1 : we find the approximation of order 1 (linear):
f(z) = f(a) + f'(a) (z — a).

For n=2 : we find the approximation of order 2 (quadratic):

o)~ fla)+ ) @ —a)+ D (e -

Example
Let’s look for various approximations of f(z) = expz around the point a = 0;

v Approximation of order 1 (linear) :
fx)me+e(x—0)=1+x

v Approximation of order 2 (quadratic) :
0 y=TixtZ

|
f(;r)%e“-l-en(fﬂ—o)"‘;—l(f—m?:1-|-:E-|—§J;2
v' Approximation of order 3 :
0 0

& . : 1, 1
f(I’J%€O+Eﬂ($—0)+%(SE—{])Z-I-%(JE—UP_1-|-l‘-+§1”2+6. y=lixsas 0 1 x

10



Example
For f(z) = In(1 4+ =) and -« we have: f(0) =0, f'(z) =

1+=x

() = (1—3:)2 — f1(0)=—1, f"(z) = i = f3(0) = 2, hence
v Approximation linear (of order 1) : Fe=xXT7 F Gy [ e
Fa) %0+ 1z —0) =2 ,
v Approximation quadratic (d’ordre 2) : £ s
_1 1 y=In(1+ x)
flx) %04—1(.1:—0)%—?(:1:—0)2:3:—5.12
v’ Approximation of order 3 : - x
-1 2 1y
f(;r.)%U-H(:r—ﬂ)+2T(1r—0)2+§(1r—0)3:1+$—512+; =

Note (important):
The equation of the tangent at the point of abscissa then a is

y=fla)+f(a) (x—a).

The quadratic approximation (of order 2) makes it possible to study the
curvature of the curve of the function f

o) % @)+ o) (e =) + 1

2!
So, on an interval 7 we have:

"(a)
2!

(t-a) = [o) -y~ = (v =)

v If " <0 then the curve of [ is below the tangent: concave function.
v If f" > 0 then the curve off 1s above the tangent: function convex.
The point where there is a change in curvature is called the inflection point.

To determine it analytically, it is necessary to solve the equation f"(x) =0
and then search among the solutions for those where " changes the sign.

23

concave J =0

SO

WYx

convexe

-3

11



Theorem: (Error of the approximation)

If a function f is n + 1 differentiable and P, is its Taylor polynomial of
order n generated by | ata < I, if|f"+V(z)| is bounded over I by a real
Mi.e.|f"V(z)| < M, then Vx € I:

Example
The linearization close to a = 0 of f(x) = sinz gives sin(z) ~ z,

What is the precision of this approximation if |z| < 0.5 i.e. z € [-0.5,40.5]?

We have max f'(@)| = max 1= sin(z)| = sin(0.5) we deduce
. (0.5)%
Vo€ [-05,+0.5 : |f(z)- Pi(z)| = |sin(z) - z| < 3 sin(0.5) < 0.06,

3.2. LE at the origin of usual functions

We have to retain the following LE at 0 of usual functions:

expx=1+5+&H +5+ -+ 5 +x"e(x)

.2 4 2 > 1
chx=1+%+F++gp+x elx)
_x .-(3 IE 1-3.'1+'. a4+
shx_ﬂ+§+§+-~—l—{?n+l],+x elx)
2 | n
cosx =1—F +5L— +(— 1]"':'2”], + x2 le(x)
. _ X x* x 2! an+2
sinx =4 —5+3 — -+ (1) (EHH:I,—FI e(x)
_ J:':'t 1.! —]_.l"rl
In(1+x)=x—=5+5—+(—1)" "+ x"e(x)

(1+x)2=14ax+24 a':g Dy24 ... 4 Q(E_I]'Hfa_nﬂjx” + x"e(x)

1
1+ x

:1—I+IE—_};3+...+{_1)nxﬂ+an{I}
ﬁ=1+x+x2+---+x”+x”6{x}
Vv1i+x= 1+%—%Iz+---—|—[—1jﬂ_11'1'3'5"'(3”_3]

S x™ + x"e(x)

12



Imporitant remarks :

» The LE of cosh & is the even part of the DL of ¢Xp 2 (we retain the monomials of even degree).
» The LE of sinh 2 is the odd part of the DL of ¢Xp & ( we retain only the odd degrees).
» The LE of COS I is the even part of the DL of ¢Xp : by alternating the sign +and —.

» The LE ST jg the odd part of ¢Xp « by alternating the signs +and —.
» For hl(l + JJ) there is no constant term, no factorial and the signs alternate.
3.3. LE of functions at any point

The function f admits a LE close to a pointr = a if and only if the function
t — f(t + a) admits a LE close to z = 0,

Therefore, we reduce the problem to 0 by the change of variables t = = — a.

Examples.
1. LE of f(x) = e ata = 1.

We pose t =z — 1. If xis close to 1 then tis close to O.

We will look for a LE of e near t = ().

(AR (z-17% (z-17  (z-1)"
v 4+l ot v Loy . 1)
¢ =T =ee fe[1+t+2!+3!+...+n!+o(t ) =e[l+(z-1)+ TR +o[(z=1)"]

So close to a = 1 we get

r—1?% (r—1)° T —1)"
@1 @1’ @-1)
2! 3! n!
2. LE of g(x) = sinx close to « = m/2. We pose t = x — 7/2, we have
r—=71)2 <= t—=0.

e"=e[l+(x—1)+

+of(z = 1)1].

. . t? 4 . 2n S
sinz = sin(t + 7/2) = cos(t) = 1—54-@—...—#(—1) @) + o(t™")
—1— (‘L — 77/2)2 + ("L — 71—/2)4 -+ (_l)n ("L — W/Q)Zn + O[(T _ ﬂ/2)2n+1]

2! 4!
3. LE of h(x) =In(1 + 3x) at a=1 to order 3.
Wesett=2—1,wehaver =1 < t =0,

(2n)!

t
In(l1+3z)=In(1+3(t+1)) =In(4+3t) =In4(1 + ?:l) =Ind +1In(l+ ?Z)

13




We pose T:%’*, wehave 1=+ 1 <= t =30 < T = 0: we use

In(1+T)=T—Z + .+ (=)L 4 o(Tm).

3t ™ TS
h(:c):ln(1+3:17):1n4+1n(1—|—z):1114—|—111(1+T):1114+T—7—|—?+0(T)

3t (%) (“)”” 3t 39, 9

=lnd+— - 1~ Yy =nd+ St 24—

n +4 5 + == 5 (4) n -I-4 = -|-64t + o[t?]
3 9 9

=i+ (-1 —(z—1 ~1 ~1

0445 (1) = o (o= 1P o= 1P 4ol = 1)

3.4. Operations on limited expantion
Let fand g be two functions which admit LEs at 0 to order n:
flx)=c+acaxz+..+c,2" +o(2") = Pr+o(x™),
g(z) =do+dyx+ ... +dp 2™ + o(z™) := P, + o(a"),

Theorem: (Sum and product)

e The TAYLOR polynomial of order n generated for the sum | + g is the
polynomial sum Py + F,;

(f+9)(x)=(cg+do)+ (cr+dy)x+ ... + (¢ + dy) T, + 0(2™).
e The TAYLOR polynomial of order n generated for the product f.q is

the polynomial product Py x F, truncated to order n, i.e. that we
keep only the monomials of degree < n ;

Example.
We have the LE of order 2:

cosz =1— § 2%+ o(z?) and VI+z=1+32— 52"+ 0(z?) then:
L o 2 1 L o 2
COSLL‘+V1+:L':[1—§£E + o(z )]—I—[1+§:z:—§:r + o(z?)]

_ 1 1 1. 5 2 1 52 .2

f(1+1)+2x+( 5 8)1, +O(,L)—2+2L & + o(z?)

1 1 1
cosa:\/lJr:E—[l—Ex + o(x )]x[1+2x—§x2+0($2)}
1 1 1 D

1
:1><[1+§:E——:E}—§J: x 1+ o(z*) + o(z?) =1+*I—BCL‘2+O(I2

8 2 8

14
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Theorem: ( Composition )

e If g(0) = 0 then the composite function f © g admits a LE of order n at
a=0 whose polynomial part is the truncated polynomial at order n of
the composite Pr[P,(x)].

Examples:
1) Calculation of the LE of i(2) = sinIn(1 + 2) at 0 to order 3.

We put here f(u) = sinu and u = ¢g(x) = In(1 + z). We have
(fog)(z) = flg(x)] = f(u) =sinu=sinIn(1 +z)  and g(0) =0.

The LEs: sinu = u — %ud +o(u?) and u=In(l+2z)=12— ”‘"2—2 + ‘%3 + o(x?),
so w=[r—iat+32d4o0(a?)P =27 —2x52% +o(z?) =2 — 2 + o(a?)

and v’ = [z — 32?4+ 32° +o(a?)] X [27 — 2 + o(2?®)] = 2% + o(2?).

Consequently
1 1 1 1
sinln(l +z) =sinu = u — 3 v+ o) = [z - 5 z* + gzr:‘g’ +o(2%)] - 5 [2° + o(z*)] + o(2?)
1, 1
:$—§m2+6$3+0($3)

2) Calculation of the LE of /() = \/cos x near 0 to order 4.

We know the LEs: cosz =1— 327 + 2t + o(u') and vI +u =1+ ju — gu® + o(z?)

We put f(u) = v/u and g(z) = 14+ u = cos(z). We have
h(z) = (fog)(x) = [()]: (1+U)=\m and  g(0) = 0.
u=cosz—1=[1-g52"+g2' +o(u!)] - 1=—-2%+ 52" + o(u?)
u? = [—3 2% + 5 ot + o(uh)]* = Tat + o(z?).
We deduce
Veosz=vI+u=1+2 u—éu +o(a') = 1+;[—%x2+ix4+o(u4)] 8[17: +o(zh)] + o(z*)
—lirc +41859 31293 +o(z )—1}1:1; 9163 +o(z")
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Theorem: (Division)

e By carrying out the division according to the increasing powers of P;
by P, to the order n we will obtain the writing:
Pr=F, Q-+ "t R with deg Q < n.
Then Q is the polynomial part of the LE at O to order n of %
AN
Examples.
24 1+ 222

Find the LE of —— to order 2.
14 22

2+ x4+ 223 1+ 22

2+ 222 2+ 1 — 272

x— 222 + 223

:1?—!-:1?3

— 7% 4+ 23

—92z2% — 274

a3+ 224

2+ x + 222
We deduce 5 =2+ 1 — 22" + o(2?)
1+

3.5. Applications of LEs

3.5.1. Limit calculations:

o cosx — 1 ‘
1) Calculate lim —————_ Let's use the LEs:
z—0 eT — ]
t2 2:3 " tQ :L.Qn "
et=14+zr+—-+—+ . +—+oa");cosr=1——+ ..+ (-1)" + o+ =t o(z™).
* +2!+3!+ Jr'n!+ (") 2! (=) (2n)! n! (=)

cosz—1  1—3a?4o(@®)—1  —j32%+o(z®)  —a?+0(2?)
e —1  14ax—1a2+o(@?) -1 z-1a2+o(a?) 2z—22+o0(z?)

16



22 2r — x°
2, 1.3 1.,
—T"+ 5 —5
148
o ocosx — 1 . 1
We deduce lim = lim —— x4+ o(z) = 0.
=0 et — 1 z—0 2
In(1 + ) — tanx + Lsin®x
2) Calculate lim ( )f 2 1= f(T). We recall:
20 322 sin’x g(x)
2 z" 3 p2ntl
In(l4+z)=z- ) +..+ (—1)"’15 +o(a") ; sinz =1z — el +..+ (—1)”‘(2n ] o(z* )
23
2 2n B — .
_ _$_ _1\n x 2ny. _ Sl % _ 3!
cosx = 1 2!—|—...-|-( 1) (Qn)!-l—o(:r: ); tanx oa o
1— =+ .
2!
r— 3%+ 1— 422
x—%xg L+%L3+
1.3
+ho? - a°
We deduce
1
flz) :=In(l+2z)—tanz + isin2 T
Lo 13 14 4 13 ayy, L L 3 412
=r—za"+-2"—-a"+o(z") - v+ -2 +ox —lr—=a"+o(z
o= 5o+ gt = gt ola)] = o+ 3o+ ofah)] + 5l — 0% + ol
——lxz—13:44—0(:54)—%1[:52—2a:la:S—I—o(x‘i)]
2 4 2 3!
Ly T4, 1, 1, 4 D 4 4
= =" -2+ -2 -1 +o(x")=——=1" +o(x").
2 4 Jr2 6 +ole) 12 T ol

17



1
g(x) =32 sinz = 32 [z — 3 2 + o(z?))?

1
=3 7 -2 3 78 +o(2Y)] = 3z*+o(2) .

In(1+ 2) —tanx + Lsinx —2 4 oo(zt 5
Then lim ( ) : 2 = lim —2 (%) = ——
2—0 322 sin’x e—0 3zt + o(x?) 36

NB: by calculating the LE at a lower order, we could not have concluded,

P 4
because we would have obtained lim f(z) = lin o(z’)

which remains an
e glx) 20 o(z?)

indeterminate form.
3.5.2. Equivalences:

1) Give simple equivalents close to 0 for the following functions:

a) 2¢* — /1 + 4z — /1 + 622 b) (cos z)¥"" — (cos z)tn T,

It is a question of determining the first terms of the LEs.

a) 2¢* —/1+4x — /1 + 622 := f(z). We have the LEs:
a2 "

e =ltutoptortttolr") and

(1_|_$) _1-|-&IL'+ ( 2_|_ ( )CE‘I‘ 4 ala— )(!an+1)$n+0($n),

then for a = ;

(o) =yTro=14 o4 02 0000 (gt LGOS g oy

To order 3 we'll have (1+)7 =T +o=1+1z -1+ La% 4 +o(a?).
We deduce

flz)=[2+22+2%+ $—3 +o(z)) — 1+ 1(4:1:) 1 (42) + L (42)* + o(z®)] — [1 + %(&rg) + o(z%)]

8 16
5 a3 16 3 ., 6 . 73 . ) 11 . i
=+ + % + gxg — 1—63:3 — 5:1:2 +o(2?) = +% — 4% +o(z®) = 3 2+ o(2?)
So close to 0 we have V1+4$—V1+6372N——33

18



b) g(z) := (cosx)¥"* — (cos )" = exp[sinz Incosx] — expltanz Incos z].

T3 I271+l ot
— o Aa 270
We know the LEs: sinz =z T + ..+ (=1)" ETES] + o(x"*)
2 2n .
T X sin x
=]1-— 1 Y fang = = L3 4
o) + . (=1)" (27@) + o(z*"); tanz i T+3w + o(z")
t? 3 In
In(l-z)=z+3i2’+. . +1z"+oa")and " =1+ 2+ = +§+ o ola),
We deduce
g(zx) = exp[(sin:r;) In (cosaf)] —exp[(ta.nm) In (cosz)]

1, 2 1, x?
—exp[(r—gm —I—O(T)) ln(l—a—l—o(rﬁ m —exp[(3:+§m‘ +o(z )) ln(1—§+ o(x ))]
= exp [(z - l:1:3+0(3:3)) (m— + 1[JJ—Q]Q—HJU:‘?))} —exp[(z+ 1Ltg%-o(a:?’)) (3;2 + = Lz = +o(z*)]

3! 2 22 ( T3 2 22
—e [SE_3+1$_5_1£L‘_5+ ("5)]—6 {aq3_|_1(r_+1$_5_|_0( )]

TPy Ty Ty T TRy Ty T
#1210 #1285 12°
=14+ —4__ - W)y ] 2 _Z v 5
tytaT 57 o) 7 21 32 W)
1 1
——%§w5+0(3:5)_—1f-|-0(x5)
1 =
So close to 0 we have (cos l)bmm (cos fﬂ)tanx ~ 1 x”,

2) Give an equivalent close to +oc of Va2 + 1 — 2va3 + o + Vol + 22,

Reminder: (1 +2)*=1+az+ = ( ?+#I 4o oles )n(.ct ntD) gn 4 o(z")

then close to 0 we have

11
(1+a)r=Vite=1+ia+ 2("‘2! 1)$2+0(372):1+%:1:—2212!m2+0(:1:2)

i(3-1)

(1+2)3 =1+ lo+ 38202 4 o(a?) = 1+ Lo — 25 2% + o(2?)

o =

iG-1)

(142z)i =140+ 2+0(e?) =1+ ;2 — o5 22 + o(2?)

1
Noticing that z — +00 <= - 0, we deduce that close to +o we have
2
VATFT = U () = 14 4 = § ()" oG] = o+ 32— d ko)

- 2 .
—2Wat o =20 {1+ (&) =2z [1+3(=)—5(%) +o(&)]=-20-3L+2 L +0(L)



VETFT = {1 () =o [+ 3 - § () +old)] = o+ 42

Adding these results, we get

fla) = Va2 +1-2Vad 4+ 2+ Vat + 22

ot g s~ 3ol 22 4D o) et
=lrt-——-=4o(=) 42—+ Fo()+[z+--—
2z 83 zt 3z 93 3;4 4
_Ll
12 x 03:
: 11
So close to +oc \/x2+1—2\‘3/a:3+x+{‘/x4+3;2~§5_

3.5.3. Others :

Find the tangent of the graph, at point of abscissa @ = 1/2, of a function f defined by

f(z) = ' — 22% + 1; and specify the position of the graph with respect to the tangent

Let's use the LE of f(x) at point a = % [(x) = 42® — 622, f"(2) = 1220 — 122; then

(x=1/2)*+0[(z—1/2)%] = %—{x—l/z)

@) = 1270 /2) @172+ L0

2 9

13
We deduce the equation of the tangent y = 36 (x —1/2).

3 (=120 ol(21/2)7

The position of the graph with respect to the tangent depends on the sign of

f(a) —y = =50 = 1/27 + otz ~ 1/2)"

which is negative; this means that the graph is below the tangent.
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Chap 2: Integration

1 PRIMITIVES

Definition: (primitive)
Let I C R be an interval. A function f : I — R admits a primitive if
there exists a differentiable function F' such that

Ve e l,F'(x) = f(x)

I is called primitive of | .

Proposition (Existence of primitives)

If a function [ : I — R is continuous then f has a primitive.

Properties

v If F is a primitive of f then, for any real c, the function F' + c is
also a primitive of f (an infinity of primitives).

v’ Any primitive of | is necessarily of the form F + ¢ for some real

constant c.

Notation : The set of primitives of a function fis denoted by [ f(z)dx

(indefinite integral of f).

Remarks :

1) The variable z in [ f(x) dz is mute in the sense that it can be changed:
[ It = [ f(z)dz = .. = [ f(m)dm

2)If a € I then F(x) = [ f(t)dt is the only primitive that vanishes at a.
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1.1. Common function primitives

f ”dx:—fa+]+cpnurn#—l fexdx:ex+c
f%dx:]nl[x]+c fﬂxdx:ﬂngae]ax+c

—1  dx=arctan(x) +c

sin{x)dx=—-cos(x) +¢ 1+x°

fCDS(I]' dx = sin(x) + ¢ cosh(x) dx =sinh(x) + ¢

1 _dx=tan(x)+c f sinh(x) dx= cosh(x) + ¢

cos=(x)

=tanh(x) +c¢

cc:sh* l.r]

f v__ll_,, dx = arcsin(x) + ¢ = —arccos(x) + ¢
2

2 INTEGRATION

Fundamental formula of integral calculus :

If a function f is continuous on the interval [a,b] and if F' is a primitive

of f (F' = f), then

b

flz)de = F(b) — Fla).

T

Furthermore, for every x € (a, b),

d f
= | 10— s

N.B.: In practice, an integral is the continuous analogue of a summation of

infinitesimal quantities.
2.1. Properties

Properties :
Let f, g: be two integrable functions on |a,b), then

v' Linearity : Vo, € R:
b

b b
/(af{x)ﬂ—,ﬁg(m))dx:a/ f(:r)d:r—l—fﬁ'/ g(x)dx

of L
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v Positivity : If VCCE[CL b] f( (&'3) then

/f(?)dlfi/ g(x)d

v'  Absolute value : we always have

/b flx)dx

v Chasles's relation : for every ¢ € [a, b]:

/j d:c—/f da:+/f
In particular / f(x / flx

v Parity: foralla >0

1)if [iseven: /af(x)dm—Q/af(a:)dx /
—a 0

a

2)if g is odd : / g(z)dx =0. = a

a

b
< [ f(a)|der.

S (=)

=

g(x)

3 INTEGRAL CALCULATION METHOD

3.1. Change of variable

Theorem:
If G is a primitive of g (G' = g) and f a differentiable function; then we

can calculate the integral / r)] f'(x)dx by setting u = f(x)

d /
We obtain d_u = f'(x) so that f () dx = du then
xr

[ olf@) £@)dn = [ gluldu = Glu) + = Glr(a) +
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Applications:

f[f[xl']"frdeZl‘%+cp0urn;&—] [E‘f[xjfrlzx]d_[:gf[ﬂ+c
[f'[;] dx=In(|f(x)) +c fﬂﬂx]frf-ﬂ dx= (log, e)a’™ + ¢

[sul[f[x)]fftx] dx=—cos(f(x)) +¢ [%{ dx = arctan(f(x)) +¢
fcﬂs{f(x]}f'[x) dx = sin(f(x)) + ¢ [cnsh[f[x}]f’(x] dx = sinh(f(x)) + ¢
f—g—mfr[[;gﬂ] dx =tan(f(x))+¢ [Sillh{f'{x]}fr[x]l dx = cosh(f(x)) + ¢

—f—v!%dx: arcsin(f(x)) +¢c=- [a‘l%dx:tanh{f{xjﬂc

Exercise:  Calculate primitives of:

1) gz — g(z) = TR 2)h:$_>f($)_m/ﬁ

Correction

1) the function f is continuous on R (quotient of continuous functions, denominator

don’t vanishes) thus admits a primitive f(z) = [* 1J:im2rdt on R.
COs*1

Put y(t) = cost then du = /() dt = sint dt, we deduce

Flz) / sint f Ly tanu|'™" = arctan(cos )|~ = arctan(cos z)+C
€Tr) = = — (U = arctarn w = alrctar(cos = arctanicosx *
1+ cos?t 14 u?

2)re Dy = z#0and1-In’z >0 < x#0and In|z| < 1/2 < 2 # 0and |z < />

the function f is continuous on | —e!'/2, 0[]0, +el/2[ (composed of continuous functions,

denominator don’t vanishes) thus admits a primitive £'(%) = J dt on

ty/1—In%t

| — €2, 0[u]0, +e'/.

Put u(t) =Int then iy = u'(t) dt = % dt, we deduce
F(z)= / ’ ;dt = ] o ; du = arcsin u.‘t:m = arcsin(cos ) ‘t:w = arcsin(cos x)4+C
tv/1-In’t v1—u?

Exercise
Look for the Primitives of

2
. 41 . T
1) f T 2343 2)f F T V14z2:
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Correction
1) f is continuous on R as a quotient of continuous functions, hence f admits a

primitive on R.
4
For u = x* + 3z we get () = 3= which is a derivative of  In |u| (see table of primitives).
Therefore, primitives of f are the functions
F:x— %ln \:1:3 +3z|+c where c¢eR

2) / is continuous on R as composition and quotient of continuous functions, hence f

admits a primitive on R.

For u = 1 + z?we have f(z) = zu—\/la which is a derivative of \/u (see table of primitives).

Therefore, primitives of f are

F:ax—=Vlita?+e where ce€R
Exercise
0 1 1 1
Calculate: 1) f_g 2121-3 dt 2)f0 w2 +x+1 dx
Correction
1) f(t) = Ao in the denominator A = 16, roots are t1 = 1 and t = —3.

The denominator does not vanish on (—2,0); f is continuous and therefore integrable on
(—2,0).
Let's decompose into simple element

1 1 A B

2r2—3 (t—1)(t+3) i—1 733

then multiplying by (¢ — 1) and setting { = 1we get , _ ! 1

T 3= T 1

then multiplying by we get (t + 3) B—

1 1
=l

Consequently

0 0 0
1 1 | 1 1
 dt= | ——dt—= [ — at
f2t2+2t3( i), 1Y 1) i3

1 0 1 0
=11n|t—1‘ |_2—11n|t+3\ ‘_2

1 1 1
= —11113 — 11113 = —51113
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2) f( ) = mm the denominator A < 0, the denominator never vanish; f is

continuous on [0, 1] and then f is integrable on (0, 1).

We put the trinomial in canonical form:
. 1\* 3 3|[/2z+1\’
.1:24—::?4—1—(2?4——) + - == (lt ) +1

4 4
2r + 1

0 — _2 :
, we deduce du = 73 d.’JL; then

1 3 4 /3
£ du = = £ arctanu + ¢
w241 2 3 2

We make the change of variable u =

1 4 1
¢4+ x4+ 1 3. (2334_1) 1 3

Iga

1 3
l G
1 2 V3 2 \/g 2\/— - ﬂ_\/g
/Omdq:—\/gar(tdnuf \/g(arctan\/g—arctan?)— 3 (5_6): o
Exercise

24r—1

Calculate primitives of: 1) frz— f(l‘) =€’ COS(GI) 2) frr— 41

Correction

1) the function f is continuous on R (product of continuous functions) thus admits a

primitive () = [T €' cose'dt on R.

Put y(t) = ¢! then du = u/(t) dt = €' dt, we deduce
g4 =1 ; ;
. =T . = . .
F(x)= / e’ coseldt = / cosu du = sin -u| = sin e{‘ = sine’+C

2) the function f is continuous on R\{=1:1} thus admits a primitive on

I =] —oc,~1[, I, =]-1,1[ and I3 =]1, +c[. Since z* =1 = (z = 1)(z + 1)(2* + 1) we
have to seek real numbers a, b, ¢, d such that

. a b cr +d
forall » e R\ {—1,+1}: f(.r)_i?—l—'_;l‘?—l—l_'—;ltg—l—l'

1
a=lim(z—1)f(z)= 7 b= lim (z+1) f(z) = % and

r—1 4 r——1

' 1
ci+d=lim(z*+1) f(x )—1—% —= C——Ef’fd—la

T
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then W=\ 705 1) T et 1\a—-1 z+1) 2\@2+1) 241

We deduce primitives of f :

1 1
Flx)= 1(1n|3¢ — 1|+ Injz+ 1|) — Zln [2? + 1| 4 arctanz 4 C

3.2. Integration by parts

Theorem :
Let u and v be two functions of class C* on an interval I, and a and b be
two reals of I;. then

f w(@p () dz = [u(@) ()] - f " (@)o(e).do.

NB: This technique applies well to products of polynomials with
trigonometric functions (cosz, sinx) or exponential functions (cxp ).

Exercise

1) Calculate the antiderivative T —> X SIN T that vanishes at 0.
2) Calculate:f re " dx

Correction

1) We are looking for the function F(x) = fOT t sint dt. The function T — TSINT s
continuous on R and therefore is integrable. Let's use the by parts rule
Put u(t) =t and v'(t) = sint, then u/'(t) =1andv(t) = — cost.

For any real x, we have:

F(r)=/ t sint d.t=/ uv' dt = — tcost
0 0

) +f cost dt = — xcosx + sint )
0 0 0

Consequently F(z) = — xcosx +sinzx.
2) * — xe” "is continuous on R, so integrable. Let’s integrate by parts.
—T

Put u(z) =z and v'(z) = ¢, then u'(z)=1andv(z)=—c

/3’;8_‘” d:!;—/uv' d:I:——:L'e_“?+/e_”“’ dr = —xe * —e ¥+ ¢ ceR
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Exercise
Calculate 1) [ cosz e dx 2) [ sint e dt
Correction

1) The function x — cos x e** (product of continuous functions) is continuous on R and

therefore is integrable. Let us Integrate by parts :

Put u(z) = cos z and v'(x) = 7, then u/(z) = —sinz and v(z) = .
Then
) 1 ) 1 . ,
fcos r e dr = /u v dr = 3 cos e + 1 /snm;e’\’“’ dx (EQ)

Ax

) , . ;
To calculate f sinz e dx let us set u = sinz and v' = e**, then ' = coszx and

v(z) =t
: Az / 1 : Py 1 Az
sinre™ dr= [ uv da::Xsm:r;e -3 cosx e dx

We replace in (Eq)

/COSI My = /1\ COS T eMJri [)1\ sin:re”i/cosr M dr} = )1\ cosxe’\“r;z sinar;eA“v‘)\l2 cosz e d,
1 Ax 1 AL 1 : Ar
Hence (1+F)/COSI€ dIIXCOSIE -|-§SII1£L“6 ,
Az A AL 1 ] AT
we deduce /COSCEG dr = O] cosze™ + e sinze

2) The function t — sint eM (product of continuous functions) is continuous on R,

therefore integrable. To integrate by parts :

Put u = sinz and v' = %, then u = cosx and v(x) = %GM.
- Az ! 1 . Az 1 Ax
sinre™ dr= [ uv das:Xsm:I:e EDY cosx e dx (EQ)
Let's calculate f cosx e dr.
Set u(x) = cos z and v'(z) = 7, then u'(x) = —sinz and v(z) = ;€.

, 1 .1 . ,
/cos z e dr = /u v dr = X cos x e + i\ sinz e dx

We replace in (Eq)
/einzse)‘”E dr = l sing e“—1 [1 COSTFAm+lfSiH reM dx} = l sin:r-e”—l CoST e”—l/sinfse” dz}
' B ALY T A ' A A2 A2 ' )
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1 : Ar 1 : Az 1 Az
Hence (l+ﬁ)/sm:{:€ d:{':Xsm:ce —Fcos:re ,

1
A cosz ™

sinze

: AT _
we deduce /SIH:E@ dr = Nl Nl

3.3. Integration of rational functions

Let's see in an example how to integrate the rational function

ar + 3
T) = —
/() ax? + bz + ¢
with a, 3,a,b,c € R,a # Oand (a, 3) # (0,0)
: o r+1 : : :
Consider the function f(x) = ————. First, we try to write a fraction of
202+ + 1

’U-’
type — (which we know how to integrate in In |[). We have u = 222+ + 1 then ' = 4z + 1.
u

1 11
202+ + 1 2r2 +x+1
_ Tz +1) + 3/4 1 dx+1 n 3 1
224+ +1 422242+ 1 4222 + o+ 1

= FE(z) + D(z).

For the first part E(x) we have

1 dx +1 1 [ 1 1 9

For the second part D(x), three basic situations can occur in general:

First situation: The denominator az? = bx + ¢ has two distinct real roots
x1,22 € R. Then f(z) can be written
arx + 3 A B
= + .
alx —x)(x —xe) T—27 T —29

flz) =

Integrating, we’ll get we have
ff(*r)d’r =Aln|z — x|+ B ln|z — zo| + Cst.

on each of the intervals | — oo, z1[, |21, xs], o9, 00| (21 < 22).
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Second situation: The denominator ax? = bx + ¢ has a double root z, € R.
Then f(x) can be written

ar+ 5 A N B
alr —x)? (v —x0)2  — 20

flz) =

Integrating, we’ll get we have

JECCE

on each of the intervals | — oo, 29[, |z, +0o0[.

A
— + B In |z — x| + Cst-
r— X

Third situation: The denominator ax? = bz + ¢ has no real root. We will see

this case later.

Let us return to example below and consider the second part and let’s

3 1
D(x)dr = -
f (z)de /42.7:2+:1:+1 v

In the denominator we have A = —7 < (), denominator has no real root, so
we will write it in the form w«? + 1 (which a primitive is arctan(u))

calculate

Denominator =2z? +x+1=2(z* + Qix + %)
=2((@+3 = () +3) =2+ + 1)
1 1 2 1 16)

then
3 1 3 1
/D(:L’)dr —f— ———dr = - fﬁdm
4 202 42 +1 8 ) (x+ 3+
3 16 1
=_- — dx
8 7 f[%(:r+i)}2+1
— | A (p 4] _ f
Put u [ﬁ (x Z)} then, du = \/- dz i.e. dv = - du and we deduce
/D(:x)d.r _ 5310 f I ! de = 3 X 16 / ! dx % ﬁ
8 7 [+ PP +1 8 7 u? 41 4
3VT VT
= 1\2_ arctanu + C'st = arctan {% (z+ i)] + C'st.
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3.4. Integration of irreducible rational functions

P(z)

Q(x)

Let f(z) = a rational fraction, where P(x) and Q(x) are polynomials with

P(x)
Q)
sum of a polynomial E(x) (integer part) and simple elements D(x) of one of
the following forms:

real coefficients and degre Q < 2. So, the fraction can be written as the

ar +
ﬁ or (a$2+b$€-(>)k WithA:bQ—4ac<O
xr — X b

where o, 3,7,a,b,c € R k € N*, a # 0and (a, 3) # (0,0).

We can easily integrate the integer part E(x). Our interest is how to integrate
the simple element part D(x).

gl .
(x — x)*

1) If £ = 1 then

Integration of

/ T dz =7 In|z — x¢| + Cst,
T — I
on each of the intervals ] — 0 Zo[, Jzo, +00f,

2) If k > 2 then

v . Y I SN v PO T | ,
fmdi Y '/(.L—,L(]) dr = _k+1(‘L—JJ{}) + C'st,

on each of the intervals | — 00 zo[, Jzo, +00],

ax + 5
(ax? + bx + ¢)

Integration of ” with A = b2 — 4ac < 0. First, we try to write a

!

. U
fraction of type — where u = ax® + bz + ¢ then v’ = 20z + b :
u

axr + f3 2ax + b 1

= )
(ax? + bx + c)* K (ax? + bx + c)F - (ax? + bx + )k
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For the first part we have
1) If £ — 1 then

2ax +b u’ .
fﬂ,’ zai——i_d:ﬂ =7 / i dr =~ In|u| + Cst =~ In|az® + bz + ¢| + Cst.
ar? +br +c u

2) If £ > 2 then

2ax + b .
f’y‘ ( j—fb++ ~dr = /— dr =~ /u"“ o dy = — gt + Cst
axr? + br + ¢) :

= 7;;’; 1(&1’2 + bz + ) F 4+ Cst

For the second part; since A = #* — 4ac < ) we have to write the denominator
in the form az® + bz + ¢ = C (u* + 1) where u is in the form u = pz + g,
du = pdzx.

1) If £ =1 then

1 ) 1 )
0 ————dr = — du = — arct C'st.
/ ar? +bx + ¢ v pC fu2+ 1 Y pC'alC an(pz +q) +C's

2) If k£ > 2 then

" (ax? + b + o)F ERYs (1-|—u2)"‘(u' T pc Tt

An integration by part permits to pass to 7, ; ...

r+1

——— . First, we try to write a fraction of
202 +x + 1

Consider the function f(z) =

ot

w .
type — (which we know how to integrate in In |u|). We have u = 22? + 7 + 1 then «' = 4z + 1.
U

3.5. Integration of trigonometric functions

To calculate primitives of the form [ P(cosz,sinz)dzx or of the form

fQ cos , sinz) d +, where P and Q are polynomials, we can reduce calculus to
(,OH.’L ‘3111.1

integrating a rational fraction, using here following methods:

e Bioche's rules which are quite effective but do not always work;
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o the change of variable t = tan(;) works all the time but leads to
more calculations.
The rules of Bioche: We note w(x) = f(x)dx, then we have
w(—z) = —f(—z)dr and w(r — z) = — f(7 — z)dx.
e . If w(—z) = w(x) then we perform the change of variable u = cos z.
e - If w(r —z) = w(r) then we perform the change of variable
U = SInx.

e - If w(m + x) = w(x) then we perform the change of variable

u = tanx.
Exercise
Calculate f _CosT dx
2 —coslx
Correction
COS T
w(x) = 3~ cos? z ¥, we can verify that
cos(m — x —Ccosx
w(r —ax) = ( ) dir —z) = (—dx) = w(x).

2 — cos?(m — x) 2 —cos’x

So, we will we perform the change of variable v = sin x, du = cosx. Then

/ cosxdx / du / du ; L Cst tan(sinz)+Cist
— = = ~ = arctan u+C'st = arctan(sin x st.
2 —cos’x 2 —(1—u? 1+ u?
The change of variable ¢ = tan(): We use the rules.
11—t 2t 2t 2dt
cosx = T sinx = ——3 tanx = -— and dx:l—&-tl'
Exercise
0 1
Calculate / —  dx
—xj2 L —sinx
Correction
2t 2dt
Putt = tan(%) then sinx = T and dxr = T consequently
1 1 2dt 1 1 1
/—_dmz/ 5 ,:2f‘—dt:2/—,dt:2—+05t-
1 —sinx 1— 2 1+ 1+ -2t (1—1)? 1—t
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r=-m2 < 2A=-1-1 < (1+1)?=0 <<= t=-1land =0 <= t=0.Then

0 1 1o 1
—dr=2—+| =2|1—-=)=1
a2 L —sinz 1=t 2

4 IMPROPER INTEGRALS

4.1. Definitions and examples

Definition :

e We can extend the definition of the integral over [a,b] with a,b ¢ R:
1) to unbounded functions on an open interval.

2) to unbounded intervals

e The principle is to consider [ f(t) dt then to pass to the limit
r — a and/or y —b.

1)  If the limit exists, we talk about convergent integral
2) If the limit does not exist, we deal with divergent integral.

e This kind of integral is called "improper integral" or "generalized
integral" .

Example :
+oo
Riemann integral : / pry dt exists if and only if a > 1.
J1
Indeed,
+o0 1 x
> ifa=1: / — dt = lim t dt = lim In(x) = +o0.
J1 t z—+oo [y T—+00
The integral diverges.
> Ifa#l
oo v tmotl e 1 ,
/ — = lim t“dt = lim = [ lim z ot — 1]_
J1 1 a—doo fy z—+oo —a+ 111 —a+1Llza+oo
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e Fora > 1:
R | 1 1

/ — = lim / 7 dt = [ lim z=°*! — 1] = — )

i et [y —a+ 1 Lla—otoo —a+1

The integral converges.

° FOI‘CY<1Z

+oo 1 ‘ €T o 1 ‘ it
= lim % dt = [ lim z7¢ —1] = 400.
J1 1

o T—+00 —a+ 1Lzt

The integral diverges.

Exercise 1 :
! t1
Study the existence of integrals 1) ] —dt 2) / —dt.
o Vi Jo t

Correction

1) The function t — % ts continuous on |0, 1] but not bounded at 0.

For all 0 < x < 1 the function can be integrated on |z, 1] and

I(:c)::[l%:z\/%lzzz\/i

T

; ymit : lim /(x) = lim 2 —2/xr =2
Passing to the limit : xl}r& (x) Ig{# NG .
11 ) . ) ) /l 1
— dt is a generalized intecral that exists. We have —dt = 2.
.fo NG 2 g Vi

2). The function t — % is continuous on |0, 1] but not bounded at 0.

For all 0 < = < 1 the function can be integrated on |z, 1] and :

I(x) :—/ %— In(t) ]

X

=Inl—Inzxr=—-Inx

We pass to the limit: lim I(x) = lim —Inz = +o0.
r—0+ z—0t

1
/ n dt is a generalized integral which does not exist.
J0O g

1
1

The generalized integral / n dt. diverges.
Jo U

Exercise 2:

o0 +o0
Study the existence of integrals 1) / e~ dt 2) f ﬁ dt.
0 _

oQ
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Correction
1) The function t —> e~ is continuous on [0, +oc| but the interval is unbounded.

For all » > 0 the function is integrable on [0, z] and :

T

I(x) := / et dt = —e7t|
0

0

=—e *+1

We pass to the limit: lim I(x)= lim —e™™ +1=+1.

T—r+00 T——+00

fooc e tdtisa generalized integral that exists. We have fooo et dt = 1.

1
2) The function t — 7

P is continuous on | — 0o, +oo| but the interval is unbounded.

For all —o0o < x <y < +0o0 the function can be integrated on [z, y] and :
y

= arctany — arctan,

xX

(|
I(x,y) :—/ 1 dt = arctant

Let's pass to the limit: lim arctany = — and
y—r+00
. 0
lim arctanz = ——,
r——o0 2
Consequently fj;o e di is a generalized integral that exists.
1 T ™
+o0
We have f—cx:- 1+ 2 dt = 5 - (*5) =T.

4.2. Convergence criteria

. 1 b 1 . a 1
dt .= hmy%b fay m dt and f—m m dt ;= lim,_, fa: @ dt.

We will note [ T

Theorem (comparison criterions):

Let fand g be two functions defined on an interval [a,b|C R.

Under the assumptions that Vt < [a,b] : 0 < f(t) < g(¢),

1) iff;bg(t) dt converges then f;bf(t) dt converges and

—b

—b
£t dt < f ot) dt;

a a

2) iff;bf(t) dt diverges then f:bg(t) dt diverges.
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Exercise:

. o0 gin? ¢
Study the convergence of the integral T e dt.
U L
Correction
.2
sin“t 1
1). vtelo. 0 < < d
) [0, +o0] _1+t2_1+t2an
—+o0 1 X
f dt = lim [t = lim arctanz = E.
~ sin?t ~ Sin®t T
We deduce that fo ] dt converges and we have 0 < f0+ Tre dt < 5

Theorem (equivalence criterions):

Let fand g, be two functions defined on an interval [a,b|C R;

we assume that: f ;)V 9 (fand g are equivalent close to b ) then

fa_)bg(t) dt and fa_wf(f) dt are of similarly nature. (both converge or both

diverge)
Exercise:
Determine the nature of the integral | / T dt.
Correction
In(1+ 1) ~ U= Eaggp o U7 and
1 . 1 . 1 1 1
f t* 7 dt = lim/ t*Pdt= ————— limt* " = ————— lim [1 —wa’ﬁ“]
0 20 f a—fF+1 a0 e a—fF+1 220

We deduce that —>U W dt converges if and only if @ — 5+ 1> 0 je. § —a < 1.

Example: (Euler's Gamma function)

Euler's Gamma function is defined by :

I'(x) —/ t" e tdt x>0,
0

It is a convergent generalized integral.
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For 0 <t < 1we have ¢ ? < 1 and then Yz € R:

1 1 1
]t“‘"le_‘ dtg/ trldt ==
0 0 T

For t > 1 we have Vz € R, t* ! < {* and max;>, t*¢""/? = (2z)*¢™"; consequently

/ e~ dt < / (P2 e 2 d < (22)%e 7 / e dt = 2[(20) e~ 2] < 2(22)% .
1 1

J1

Properties :
1) ForeveryneZ.: I'(n+1)=nl

=

UL G
— Tn+1)}

2) foreveryr >0:T(x+1)=al(z),
3 I(1/2)=vn

4) Stirling's approximation:

1
nl ~\V2rn"tze™

— annine)"

0.0 0.5 1.0 1.5 2.0 25 3.0

Note: the formula I'(n 4+ 1) = n! shows that the gamma function is an
extension of the notion of "factorial".

4.3. Absolute convergence
Definition
Let f be a function defined on [a,b[C R ; we say that f is absolutely

integrable or that f;b f(t) dt is absolutely convergent if

—b
] ()] dt < oo.

Theorem:

absolutely convergent integral — convergent integral.

Example:

+oo 1
. sint
Let us study the convergence of the integral f —Sﬁ dt for o > 1,
1
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We have

sint
t(v

/+Oo
1

1
because f1+°° o dt is a Riemann-type integral which converges for & > 1

oo
1

sint

So fl+oo o dt is an absolutely convergent integral and from the above

sint
theorem we deduce that [, s

dt is a convergent.
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Chap 3: Ordinary Diiierential Equations (ODE)

1 DEFINITIONS

Definition (differential equation ordinary ):

v An ordinary differential equation is a relation between an
unknown function (of one variable x ) and its derivatives.

F(z,y,yy",...) =0.
v' The order of a differential equation corresponds to the maximum
degree of differentiation to which the unknown function has been

subjected.
Thus, a differential equation of order n is an equation of the form

Flz,y,9,y",....y™) =0
v If the coefficients relating to the unknowns y,y'y", ...are constants,

the equation is said to have constant coefficients.

v If the coefficients relating to the unknowns y,y'y", ...are functions of
X, the equation is said to have variable coefficients.

v Any function that satisfies, for all x, the equation F(a:,y, y', y”, ) =0
is a solution of this equation.

v' Solving (or integrating ) a differential equation consists in
determining the set of functions which are solutions to it .

2 FIRST ORDER ODE

A differential equation of the prime order is of the form

F(z,y.y") =0 or y' = flz,y).

Examples.
1) Here are some easy to solve differential equations. Find a function,

solution of the following differential equations:
a)y = sinx by =1+¢" Ay =y
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Answer : These are (simple) first-order differential equations. The solutions
are the primitives of the second member:
a)y=—cosz+k (keR) b)y=z+e"+k (keR), oy=ke" (keR)

2) Consider the differential equation iy’ = 2z y + 4.
Check that y(r) = kexp(22) —2 (k € R) is a solution on R.

Answer : These are first order differential equations with variable
coefficients. We replace y(z) to see if it satisfies the equation:

on the left: J = [kexp(22) - 2] = 2k exp(x2)
on the right: 20y +41 =2z [kexp(22) — 2| + 4z = 2r kexp(22) — 4z + 4z = 2v kexp(22)

therefore effectively y(z) = kexp(22) —2 (k € R) is a solution of the
differential equation 3’ = 2z y + 4x for all k£ € R.

3) Same question for 2?y” — 2ry + 2z =0 and y(x) = ka®> +z (k € R).

Answer : These are second-order differential equations with variable
coefficients. We substitute y(x) to see if it satisfies the equation:

we have y(z)=ka?+x, y=2%kz+1 and y' =2k,

We replace in the equation

22y — 2wy + 2r = 22 (2k) — 20 (2kx + 1) + 22 = 2k 2? — 22 (2kx + 1) + 22=0,
therefore effectively y(z) = kexp(z2) — 2 (k € R) is a solution of the
differential equation 3 = 2z y + 4z for all k& € R.

2.1. Linear 1st order ODE
The linear case can be written more simply:
y' +p(x)y = q(=)
Multiplying by f(z) > 0, said integration factor, we get
p(@)y + p(@) pla)y = p(@) g(@).
We Look for () > 0 such as /(z) = p(z) p(x) :

i (@) = p(z)pla) <= plx) = el r@d
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In this case we have  u(z)y' + p/(z)y = (u(x) y)! = n(z) q(x),

then we can deduce the solution

o/
y=——= [ plz)q(x) dz,
= [ nw)at
Method :
to solve the differential equation Y +p(x)y = q(z)

v we calculation of the integrating factor j1(x) = el Plo)de,

v’ by multiplying by )u(m) we obtain an equation of the type
p@)y + i (@) y = (ulx)y) = uz) ().

v We easily integrate ((x) y)’ = u(x) q(x) to find

1

Y= @ /M(x)fl(fﬁ) dz.

Exercise

Solve the following differential equations.
1

cosx’

) yY+2iy=6z> 2 tanz %ﬁyz
3) Y —ry=x 4 ty +2y =4 withy(1) =2
Correction
Dy + % y = 622 is a first order linear equation.
Its integrating factor is [L(ZL’) =ef zdo = 61113:2 = 22,
Multiplying the equation by pi(x) = 72 we get:

2y +2ry =22y + (2%) y = (2*y) = 62°;
hence by integrating we’ll get

iy =a1%4¢ or y=$4+$%.

d . . . . .
2)tanx &% +y= cos ¢+ 1t is a first order linear equation. let's write

dy 1
- tcotxr y=

sin x?
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cos T dx d(sinx)
the integrating factor is given by ,U($) = ef sine = ef sin

= ST —gin g,
Multiplying the equation by p(x) = sinx we’ll get:

sinz dy 4 (coszdz) y = d(y sinz) = 1 dz,
Integrating, we get the solution:

Yy sinr =+ c.

/ e . .
3) Yy — TY = I is a first order linear equation.

2
—ad: _z
Its integrating factor is ,u(l?) = el ~wdr — =7 .

1?2
Multiplying the equation by jt(z) = ¢™ 7 we get:
e Ty t(—xe T )y=e 2y +(eT)y=(e7y) =ze7;

By integrating we obtain:

(]

T s ﬁ
ye'T =—¢e 2 F¢ or  Yy=—1+4cez.

4)1 y’ + 2y = 442, with initial condition y(1) = 2. it is a first order linear equation

which is written
Y+ 2y =4t
Its integrating factor is
p(t) = ol 3dt — Jnt? _ 12
Multiplying the equation by pi(t) = t? we get:
Py 42ty =(Py) =t
hence by integrating
ty=t'+c oo Y=t'+5.
With the initial condition y(1) = 2 we will have
(12?2=(1)+c = c=1L

[

1,2)

Thus the particular solution is

y=1t"+%. )
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2.2. 1st Order ODE Separable

A first-order ODE can be presented in the form
M(z,y)dz+ N(z.y)dy =0 - ().

There is no general method but an interesting special case is when the
functions are M(z,y) et N(z,y) separable variables i.e. :

M(x,y) = My(x) May(y) and N(z,y) = Ni(z) Na(y).
then the equation («)is said to have separable variables and the solution is
obtained by simple integration
Method:
with the hypothesis My(z) # 0, Ni(x) # 0 we can write:

M (x) No(y) ,
() Nl(:c)dx+ﬁ'fg(y)dy_ ,

then we integrate.

Example :
Consider the differential equation xdr + ydy = 0.
It is an equation with separated variables. By integrating on both sides
T? yQ
f:rd:z: + fydy = either T TS5 =0
with ¢; > 0. Let 2¢; = ¢?, then the general solution is given by
22 42 =2

which represents a family of concentric circles centered at the origin of the
coordinates and of radius c.

Exercise

Integrate the following differential equations.

dy 1—|—y2 dy 1+y° L dy __ 0032y
1) dr — 1+x2° 2) dx + xy?(1+x2) O; 3) dr — sinZz-
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Correction

dy _ 1+y° dy  dx
1D g T+22 can be written in the form 1+ gL
By integrating in both sides we get: arctany = arctanx + ¢, o

y = tan(arctanx + ¢),

NB: if we pose ¢ = arctan k then the trigonometric formula
tana + tanb

tan(a + b) = ——————— will allow us to write
1 —tana tanb
r+k
y = tan(arctan x + (arctan k) = )
1 —kx
dy 1+y — L
2) 4 ‘I‘ (1+a?) 0 can be written in the form
2
i Yy -1 B é Bx+ D
1 +y3dJ S ox(1 +9:2)d9: B :rd$+ 1+ a2 de-

Multiplying by zwe have {1;:}:2) =A+ (Bf_l:g)m forz =10 we get A = —

Multiplying by 1 + 2’we have _Tl 4(l+1 ) + Br+ D;forx =4 we'llhavei=Bi+D
then =1and b =0.
The equation becomes

1 3y? 1 1 2

- 3y dy = — —dz + = 3: d:z:.

31+ T 21+

Integrating we obtain:
$ In[1+y%=—Injz[+1 In[l+2? +c,

multiplying by 6 and using the properties of the logarithm we’ll have:

L2 46 2° (4+4°)° _ 6e _ 4
I o) 27 (HJL)QC =6c  or ﬁ =e*“=c,

dy cosgy 1 du — —1 dr

3) dr — sin2 - Gan be written 052y Y sinZa

by integrating (see table of primitives) we obtain:

tany = —cotx +¢  or  y=arctan(—cotz + c).
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3 SECOND-ORDER LINEAR EQUATION WITH CONSTANT
COEFFICIENTS

v’ A differential equation of the second order is of the form
F(x,y,9',y") or y' = f(z,9,9).
v' Alinear differential equation of the second order is of the form

ay’ +by +cy= f(z).
v’ A linear differential equation of the form
ay’ +by +cy=0.
is said to be homogeneous or without second order.

3.1. Homogeneous equation with constant coefficients

Consider the linear and homogeneous differential equation with constant
coefficients of order 2:

(a£0) ayf +by +cy=0 —--E,
where a, b and c are real constants.

Let's look for solutions in the form y = eke , k = cste; so
yr — kekm ; y.r.r — kzekar:_

Substitute these expressions into the equation £j, we’ll get:
¥ (ak? + bk + ¢) = 0;
as ekr £ (), we must have
ak® +bk+c=0 — (eq).

NB: if y1 and Y2 are solutions of the equation £} then, by linearity,
Y = C1Y1 + C2 Y9 is also a solution of the equation Fj,. Indeed
ay” +by' +cy =alciy+cayn)" +b(cry +cagp) +clcry + c2yn)
= [ay’{ +by +cy1} + [ayé’ + by, + cyz]
= 0+0
=0
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Resolution (to remember ):

To solve the linear homogeneous 2nd " ODE

(a #0) ay’ +by +cy=0 — —E;

we must consider its characteristic equation

ak? +bk+c=0 —(eq);
and calculate the discriminant A = b* — 4ac.

1) If A > 0: the characteristic equation (eq) admits two distinct real

roots |;, = _b;—\/ﬁ and k| = —b;—\/ﬁ;
a a

. — k1 _ ke . .
the functions Y1 = € " and Y2 = €™ are solutions of the equation
FEy, then:

%
Ve, € R 0 yg=cyi+cyp=ce 1m+026m

is the general solution of the equation E},.

2) 1f A = 0: the characteristic equation (eq) admits a (double) root

kx kx

b .
k= 5 and the functions y1 = ¢ and y» = x e"* are solutions of the
a

equation E}, then :

ka

Ve, co €ER 0 yg =iy ey = (cl +(:2:1:)e

is the general solution of the equation Fj,.

3) If A <0 : the characteristic equation (eq) admits two conjugate

complex roots

~b—i+/|Al b A —b+1./|A — A
oo WIAL b VAL and o - 2EVIAL b VIAL
2a 2a 2a 2a 2a 2a

we deduce the existence of complex solutions of the equation Ej,.

— pla—i)e _ jax —ifix e — ploti)a — jax Fifw
yp=e€ e*te and Y =¢€ et e )
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We can obtain real solutions

i 3 —ifBx
Y2 + aT e’ + € ax
= =c¢ =e€ cos(fFx
_ +ifx _ —ifx
Y2 — 1 . € e )
d - = 7 , =e" sin(fx
an 21 21 ()

then Vci,00 € R

yp = c1 €% cos(Bx) + ca e sin(Fx)
= e*" [e1 cos(Bx) + 2 sin(B )]

is the general solution of the equation Fj,.

AB: Often in physics we rewrite this solution in the form
yg = e“* A cos (ﬁcv—i—q’))

C:

C
with A=+d+4, cosc'az—;1 , sing = T‘T

Example 1:let's solve the equation 4" + 1y — 2y = 0.

characteristic equation : 2 +k—2=0;roots: ky =1 and ky = —2,

2x

general solution : y=cre" +ce”

Example 2:
let's integrate the equation 4" + 9y = 0 with initial conditions y,_q = 0,
yfv:[] = 3.

characteristic equation: k2 4+9=0;roots: A =—-36 k; = 3iand ky = —3i.

general solution : Y = €1 €S 3T + ¢o sin 3x;

particular solution : we have iy’ = —3¢; sin 3z + 3¢y cos 3x. Applying the initial

conditions, we’ll get

y(0)
y'(0)

Calculate this we will obtain ¢}, = 0, C, = 1.

0=Cqcos0+ Cssin0,

=0,
=3 3=-3C:sin0+ 3C5cos0

Consequently, the particular solution is y = sin 3z
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Example 3: Solve " + 2y + 5y = Owith y(0) = 0 and ¢/(0) = 1.
Characteristic equation: k* +2k +5 = 0, roots: ki=—1+2iand ky = —1 — 2i;

complex solutions:  y = e % e

real solutions: Y = e " cos2r and Yo = e T gin 27;

general solution : y = e “(c1 cos2z + ¢y sin2r),
particular solution : y' =e "2 cos2r+e ey sin2e
y(0) =0, 0= eo(cl cos 0 4 ¢9 sin O):
—
y'(0)=1 1=¢22¢5 cos0+ e "¢y sin0

We will get ¢; = 0 ¢, = 5 then

|
The particular solution soughtis Yy = 5 e " sin2x

Example 4; Integrate the equation " — 4y’ + 4y = 0;
Characteristic equation: k* — 4k +4 = 0; roots: k= ky = 2.
general integral: y = ¢ e** + ¢y x 2.

Exercise

Solve the following differential equations. Observe the curves of the solutions and

compare. Explain the differences.

Dy +9y=0 2y +y +y=0
3) 16y" — 8y’ + 145y = 0; y(0) = =2 and ¥'(0) =1

Correction
1) Let the equation y" 4+ 9y = 0.
Characteristic equation: k*+9=0;

roots: ki = +37 and ko = —31,

. _ Ftidx
complex solutions: y=c¢e-

real solutions: Y1 = C0S3T and Y2 = sin 3z,
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general integral : Yy = c1 cos3x + o sindx,

NA A NN,
AVAVAVAVAVE

FIGURE 3.4.3 A typical solution of y” + 9y = 0.

2) Let the equation '+ +y=0.
Characteristic equation: K 4+k+1=0
roots: k1=%+’é§andk2=l—i%,
. +i \/_
complex solutions Y= e’ e ;

V3 L V3

. -1 iy
real solutionsy, = ¢~ 2" cos 5@ and yy = ¢ 2" sin —u;

. _1, 3 3
general integral : y=e 2 (cl C08 % + ¢y Cos 73})

y -~

2

|

a 6

1 | | ——
= N~ — 8

FIGURE 3.4.1 A typical solution of ¥ + ' + y = 0.

3) Consider the equation: 16y" — 8y + 145y = 0;  y(0) = —2 and ¥'(0) =

Characteristic equation: 16k% — 8k + 145 = 0;
roots: k1:%+3iand ko = é-l—?)i,
y = 6%3: eiifi:r:'

2

complex solutions:

1,

1., .
real solutions: 1y = e2* cos3x and 2 = e*” sin 3x;

1
general integral y = et ((31 cos 3T + ¢y sin 3$)

1 1
initial conditions : ' = eér[(lcl + 3¢y) cos 3z + (102 —3c1) sin 31‘-];

—2=cjcos0+cpsinll =g
1 (1 + 3cy) 0+(1 3c) sin( : +3
=(-c "5) COS —cg — 3cp) sin0) = ¢y + e
4(1 Coy| CO 4(,2 C1 ] SII 4(1 9
we'll find ¢ = =2, ¢5 = 1.
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1
The particular solution : Y= 64T — 2 cos 3w + — sin 3uL

y

/\/\/\m
/\/\/U

—1o|-

URE 3.4.2 Solution of 16y” — 8y’ + 145y = 0, y(0) = —2, y'(0) = 1.

3.2. Inhomogeneous Linear Equation (with second member)

Theorem:

The general solution of the.inhomogeneous equation (with second member):
"+ by + cy = f(x)

is the sum of a particular solution 1* plus the general solution y of the
corresponding homogeneous equation

"+by +ey=0 — —Ej.

Question : how to find a particular solution y*?

3.2.1. Determination of coefficients

The second member allow to conjecture the form of the particular solution
y*(see table) and then we deal with the indeterminate coefficients method.

Whether f(x) = Choose y* =
P,(t) e (Ag + Ay + Aga® + ...+ Aya™) t5 e
P,(t) e cos it (Ap + A + As® + ... + A,2") 7 e cos Bt
or P,(t) e sin St *
(Ag+ Ay + Ag® + ..+ Apa™) t° e sin Bt

where s € {0, 1 }the smallest value for which Yyt =1 x ( .. Jis no longer a solution of the associated homogeneous
equation.
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Example 1: Find the solutions of ¥ + 3y’ — 4y = 22,

Let's find the solutions of the associated homogeneous equation :
y'+3y —4dy=0

characteristic equation r? 4+ 3r—4= 0, A= 25, r=1, ry=—4;
general solution: Y = C] Bt + 026_4t.
Particular solution (of the form of the second member): y* = Ax? + Bx + C.

Substituting y, y*’'=24r+ B and y" " =2A, into the equation we get
2A + 3(2Az + B) — 4(A2? + Bz + C) = 27,

—4Az* + (6A — 4B)x +2A 4+ 3B — 4C = 17,

by ID: “4A=1, (6A—4B)=0,  24+3B—4C =0,
_ 3 _ 13

we deduce: A=-3,B=—50=—5.

The particular solution is y* = —iil}? — %l, — ;’—312

The solution of the inhomogeneous equation is

0y — ot wp—4t 1,2 3. 13
Yy = cre + e e gL 32

22,

Example 2: Find the solutions of ¥" — 3y — 4y = 3¢?.

Let's find the solutions of the associated homogeneous equation :
yn . Syr — 4y =0,

characteristic equation: r?—3r—4=0, A=25 r=—1,r=4

general solution: Y — C et + 6264t.

Particular solution (of the form of the second member): Y= AB%;

we replace v, y* =24 and y* " = 4A¢*, in the equation we’ll get
4Ae* — 3(24¢) — 4(Ae”) = 3¢™,

—GAe2 = 32 and so A= —%.

* 1.2t

The particular solution is Yy = —3¢€

The solution of the inhomogeneous equation is

_ —t 4 1 2t
Yy = cre "+ coe 5€7"
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Example 3: Find the solutions of "' — 3y’ — 4y = 2sint,
Let's find the solutions of the associated homogeneous equation :

y' =3y — 4y =0,

characteristic equation: r? — 3r—4=0, A= 25, ri=—1, rp =4,
. _ —t 4t
general solution: Y = C1€ ~ + C2€" .
Particular solution (of the form of the second member): y* = Asint + Bcost,
By substituting y, y* ' = Acost — Bsint and,
y* "= —Asint — Beost, we'll get

(—Asint — Beost) — 3(Acost — Bsint) — 4(Asint + Bcost) = 2sint
(3B —5A)sint + (—3A - 5B) cost = 2sint,
then 3B-54=2 and -34-5B=0, we deduce A=-5/17 and B=3/IT.
The particular solution is y* = —5/17sint + 3/17 cost

The solution of the inhomogeneous equation is

y=cre "+ e’ —5/17sint + 3/17 cost.

Example 4: Find the solutions of ¥ + 4y = 3sin 2t.
Let's find the solutions of the associated homogeneous equation :
Yy + 4y =0
characteristic equation: 1 +4 =0, ro=—2i, ro=2i
general solution: Yy = 1 €08 2t + ¢y sin 2t.
Particular solution (of the form of the second member): y* = Asin2t + Bcos2t,
substituting y, vy*’' =2Acos2t —2Bsin2t, y* " = —4Asin2t — 4B cos 2t, we’ll get
(—4Asin2t — 4B cos2t) 4+ 4(Asin 2t + Bcos 2t) = 3sin 2t,
(—4A + 4A)sin 2t + (—4B + 4B) cos 2t = 3sin 2t
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Remarque : By identification we notice that we cannot find such A and B.
y* = Asin2t + Bcos 2t is solution of homogeneous equation.

NB (important):

If the chosen form y* is already a solution of the associated
homogeneous equation, we must seek a particular solution in the
form

y* =1t (Asin 2t + B cos 2t)

with s € {1.2} such that y*is no longer a solution of the associated
homogeneous equation.

Therefore, we must look for a particular solution of the form

y = Atsin2t+ Bt cos2t.

We calculate ¥* ' = ..and y* " = ..., we substitute in the equation to obtain,
—4Asin2t + 4B cos 2t = 3sin 2t then B=0 and A= —3/4.
The particular solution is Yyt = —4/3 t sin 2t

The solution of the inhomogeneous equation is
Yy = 1 €082t + cosin2t — 4/3 t sin 2t
3.2.2. Variation of the constant
This method has the advantage of being general, it applies to any kind of
differential equation, but the calculations are more consistent.
Method:

We take the general solution of the homogeneous equation (Eh) and we

transform the constants C'y and C5 into functions Cy(.) and Cs(t)...

1 1 coS
Example : 1) Check that | —dr=In|— — ,b v
sin t sint sint
2) Find the solutions of y" + 4y = ﬁ

1 cCos T
1) let us set u := — — —
sint sint

[ 1 cosS ¥

and note that

—dr =1n

- } =lhu +<—
sint

/
sint  sint U sint’
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, [ 1 cosx]’ —Ccos T —1 1 —cosx
u = = et

sint sin ¢ sin® ¢ sin® ¢ sin® t
! l—cosx 1—cosz 1—cosx sint 1
U sin? ¢ sint sint 1 —cosz sin t

2) Let's find the solutions of the associated homogeneous equation:
y" +4y =0,

2 o - . o .

characteristic equation: T T 4= 0, r=—2U, ry= 21,

general solution: Y = C1 COS 2t + co sin 2t.

Let's use the constant variation method : Determine c,(t) et ca(t) such that

y = c1(t) cos2t + co(t) sin2t

is solution of the inhomogeneous equation y” + 4y = %

By differentiating we get
y = —2c1(t) sin 2t + 2c9(t) cos 2t + | () cos 2t + cy(t) sin 2t

Let us choose for simplicity ¢1(t) et cy(t) such that
A (t) cos2t + c4(t) sin2t =0 (A)

then we will have
y' = —2c1(t) sin 2t + 2¢9(t) cos 2t (1)
A second derivation gives
y" = —dcy(t) cos2t — dey(t) sin 2t — 2¢}(t) sin 2t + 2c)(t) cos 2t (I1)

By replacing (I ) and (II) in the equation we obtain after calculation
3
—2¢(t) sin 2t + 2¢,(t) cos 2t = —
1 (1) 5(t) St (B)

In summary c; () et co(t) must verify the equations (A) and (B):

| (t) cos2t + cy(t) sin2t = 0 (A)
3
2¢) (t) sin 2t + 2¢h(t) cos2t = — B
1 (t) sin2t + 2¢5(t) cos o (B)
From ( A) we have: h(t) = —cj ()2t (C)



3sin 2t
: . / t _ __ t
We replace in (B) cA(t) = Sy 3 cos

by integrating c1(t) = —3sint + k
Resuming ¢;(t) in ( C):
_ 3cost cos2t  3(1—2sin’t) 3

L(t) = = = — 3sint
62( ) sin 2t 2sint 2sint S
3 1 cost
by integrating ca(t) = =1In [— — — } + 3cost + ko.
2 sint sint

Consequently the solution of the inhomogeneous equation is

1 t
[, - COS] + 3cost + ko) sin 2t

3
y=(—3sint + k 2t —1
y = (—3sint + ky)cos2t + (= In i

2

3 1 cost
y = —3sintcos 2t + 3costsin2t + = In [_—— -
2 sint  sint

] sin 2t + ky cos 2t + ko sin 2t

. 3
y = —3sint[2cos’t — 1] + 6cos’tsint + = In

[ 1 cost
2

—_ = —] sin 2t + Ky cos 2t 4 kg sin 2t
sint sint

The solution is finally

3sinf + 3 1 [ 1 cost
= S111 —mn|{— —
y 2 M lsint  sint

} sin 2t + kq cos 2t + ko sin 2t

4 HIGH ORDER EQUATION

1) Solve y @ 4" — Ty — ) + 6y =0,
with the initial conditions  y(0) =1 4'(0) =0 ¢"(0) = =2 y"(0) = —1.

characteristic equation: % +F —Tk* —k+6=0,
roots: let's check for %= =1, we have
P+13—-7212-146=14+1-7-14+6=0 then k; =1 is a root.

(=)' 4+ (=1)* = Ta(=1)> = (1) +6=1-1-T7+1+6 =0 then k2 = —1 is a root.

We deduce
kY4 kP —Tk? —k+6=(k—1)(k+ 1)P(k),
and after calculation:
EU b — Tk —k+6=(k— 1 (k+ 1) (k> +k —6);

56



the roots are: k=1 ko = —1 ka =2 ks = —3.

. _r , _ T 2 =
Solutions: Yy = e’ ys =€ ° Y3 = e . Yy =€ SL.

. - —z 2 9
General integral: y=0C1e"+Coe " +Ce™ +Che 33_
Particular solution: we need the derivatives

'y’ =C1e" —Coe ™ + 2C5 e — 3C, e 3
’y” = Cl e’ + CQ e " =+ 403 GQIE + 904 8_3"1'
ym _ Cl et — 02 e T 4 803 e2:1", _ 2704 6—3.'1.'

thus
y(())=1 Ci+Cy+C3+Ci=0
y’(O):O C]*CQ+203*304:0
y”(U) = -2 — Ci+Cy+4C5+9C: =0
y’”(O) = —1 Cl —CQ+803—27C4:0_

Solving the system we get:

11 5 -2 -1
Clzg CQ:E 03:? Oizg.
11 5 . 2 5 1 _
Hence the particular solution is : y=—ce"+—e " —= % — — 73
& 12 3
2)  Solve y W —y =0
with the initial conditions  y(0) = £ 3/(0) = —4 y"(0) = 2 y"(0) = —2.
Solution :
characteristic equation: rd— 1 = ('1"2 — 1)(7"2 + 1) =0;
the roots: ki =1 ko = —1 ka =1 ky = —1.

solution : y = € Yy =¢e " Y3 = COST Y4 =Sz,
General integral: Y = Cie"+Che ™4 C3 cosa + Cy sinx,
particular solution: we need the derivatives
y =Cre" —Coe™ — (O3 sine + Cy cosx
y'=Cie" +Coe™ — Oy cosx — Cy sinx

y" =Cre" —Cye ™ + Cysina + Cy cosx
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thus

y(O):% C]+CQ+03:%
'
y(O):—_é‘ Ch—Co+Cy=—4
y'(0) = 2 i R R e
y’”(U) = —2y(0) =1 Cl - CQ - C4 =1
Solving the system we get:
€y =0 Cy=3 ('3:% O =—1
1 |
Hence the particular solution is : y=3e¢ "+ B COsST — ST,
Y
2

LA N TN

24 6 \8_10 12 M4 _t

2ok

3) Solvey™ + 2y” + 4y = 3sinz — Scosx

Solution :

characteristic equation: rd 241 = (frz + 1)(fr2 +1)=0;
the roots: =1 ro = —1 rs =1 Ty = —1i.

solutions of the homogeneous equation :

Y1 = COST Yo =SINT Y3 =2 CcosT Y4 =T SINT,

Solution general of the homogeneous equation '

yp = Ch cosx+ Cysine + Cg x cosx + Cy x sinx,

Particular solution: it must be in the form y* = Asinx + Bcosx
but since we already have the solutions Y3 = T COSZ and Y4 = sin

we must look for the solution in the form y* = Az? sinz + Bx® cos .
By differentiating and then substituting in the equation we get

—8z%sinx — Bcosx = 3sinx — Heosx
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and by identification we obtain A== and B =2, hence

8

ool

the general solution is:

.
2

2 . 9]
sinax + gl COSs T

: .3
y=~Cycose+ Cysine + Cy w cose + Cy x Sm;rgx

4) Solve ym — 4y =t + 3cost + e

Solution :

characteristic equation: 1> —4r = r(r* —4) =0 ;

roots: ry =20 ro = 2 ry = —2.
Solutions of the homogeneous equation :
0t 2t -2t
n=e =1 Yo =€ ys =€ °°,

General solution of the homogeneous equation :

yp=C—1+Ch et + (5 e,

Special solution:

The second member of the equation is a sum so we can simplify the
calculations by considering

Y=+ ys +ys
where
a) y| will be particular solution of ym — 4y =t.
Let us pose y; = c1t + ¢, but as Y1 = ¢ste js already solution then one must
seeks ¥ = t(c1t + c2).

b) y; will be particular solution of ym — 4y’ = 3cost. Let's put 5 = cgcost + ¢ysint.

) y%‘ will be particular solution of ym — 4y = e 2,

Let's put Y5 = 6567% butas ¥3 =€ ' is already a solution then we have to

seek yi = c5te .

The resolution of each case will give

-1

— 1
612?70220:63:016427365

zg’

and v =y + s tus = —%tz — %sint + %te_%.

the general solution is:

0 1o 3. 1 .
y=C—14+Coe"+Cse 4y =C -1+, egf-I-C';ge_zt—gt“—gsmt-l—éte_k-
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Chap 4 : Functions with several variables

1 GENERALITIES
1.1. Introduction
The functions of several variables are natural, for examples of that:

1) temperature depends on latitude, longitude and time:

T:R* >R
(z,y,t) = T'(x,y,1)

2) the cost of an advertising brochure depends on its format (A4, A5), the
number of pages, the number of colors used, etc.

Definition

v Afunctionf of R™ with real values is a relation that corresponds to any
point X = (1,2, ..., x,) of R™ at most one real number f(X).

v' The domain of definition of f is the set D; C R"of points

X = (a1, 9, ..., x,)Which have an image by f.

v The image by f of D is the set Imf(Ds) ={r=f(X), X €eR"} CR.

v' The set of points S = {(X, f(X)) . X} C R**! is the representative curve
of f.

.B.: we often use the notations (z,y) if n=2 and (z,y, z) if n= 3.
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Example
The domain of definition of the function

flz.y) =/xFyisgivenby Dy ={(z,y) e R*:x+y >0}. ,

It is represented in a half-plane. A . P
% il |
In addition, the values taken by the function go -
through the entire set of positive or zero real numbers: . X
b
Imf(Df)=R+ "-.
b By
N.B.:

The geometric representation becomes heavier than for functions of a single
variable (n variables are visualized a priori in a space with n +1 dimensions).

1.2. Functions of two variables

When n = 2, the graph G; = {(z,y,2) : (z,y) € R® et 2 = f(z,y)} is three-
dimensional . The axes relating to the variables, x and y , are
conventionally located in a horizontal plane (the domain D then appears as a subset
of this plane), while the vertical dimension is reserved for the values of z .

d

le,.s V2-plane the xy plane equation: z=0;
= Y ) £
0 the xz plane equation: y =0; /u__j,--»---.____ o
—+ the yz plane equation: x =0 o
e }%‘ ¥ y p q X _.r'" -\-_-\-IF-\-\-_“-\._ .
Exercise

Determine and represent the domain of definition of the functions given by:

D)f(z,y) = @ 2)f(a,y) = \/1% - Yfley) =lntzry), Dfley) = %
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Correction

)f(a.y) = —"‘j;

_ 2> < z?
xeDf@{ yrat 20 @{y—x

y >0 y >0
This is the intersection of the positive y half-plane the lower

part of the parabola of equation y = 2

Iny

2 " —

)f(z,y) —

i y >0 y >0
€Dy {I_y>0 = {y<x

This is the intersection of the positive y half-plane the

lower part of the line of equation y = .

3)f(x,y) = In(z +y)
re€D; <= r+y>0 < y>-—x

This is the intersection of the positive y half-plane the

lower part of the line of equation y = —zx.
In(z? 4+ 1
) f(x,y) = H(ﬁi’cigj) reDp <= v#0ety+#0

deprived of the origin.

1.2.1. Surface representation

The altitude z = f(x,y) is
used to illustrate the graph
of the function f: R? - R.

(z,y) = flz,y).
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sin(x) x sin(y)

sin(x) +sin(y)

xy

Example : (Horse saddle) The graph of the
function f : R? — R defined by
2 2
f(xa y) =T =Y
is a surface that has the form of a horse's

saddle.

1.2.2. Partial functions

The partial functions associated with f : R — R are functions of R in R

given by the intersection of the representative surface of / with “ vertical
planes parallel to the axes ”.

f‘a: RE—-R
y— fla,y)

Example : Thanks to partial functions we can guess the surface
representation of f : R* — R simple functions:
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1) If f(x,y) =1 then

flz,b) =1 line
fla,y) =1 line

thus, the representative curve de f is as follow

2) If f(z,y) = 2? then

f(z,b) =22  parbola
fla,y) = cste line

thus, the representative curve de f is as follow

3) If f(x,y) = 2% + 4> then

f(z,b) = 2? parbola
fla,y)=y*  line

thus, the representative curve de f is as follow

Exercise

1) Guess the expression of a function whose
is0-0 (i.e. the level 0 line) represents the bank
of a straight river.

2) Modify the previous function so that the

water flows in the direction of positive x

Correction
1) We have f(a,y) =y* (parbola)
and f(x,b) =cste  (line)

therefore
flx,y) =y
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2) For water to flow in the direction of positive x we must
have flx,b) =azx (a<0),

i.e. a line inclined towards the positive x, and

fla,y)=y* (parbola).

We deduce flz,y) =y*+azx (a <0).

flz,y) =y* — %JE for example, for a slope of 10%.

Exercise

1) Guess the expression of a function whose
is0-0 (i.e. the level 0 line) represents the
bank of a straight river.

2) Modify the previous function so that the

water flows in the direction of positive x

Correction
1) We have f(z,b) = cste (line)

et a curve parallel to a y with a form | .(’| \ |,

thus flay) =y' =y
Therefore flz,y) =y — 92

2) For water to flow in the direction of positive x we
must have  f(z,b) =axr (a <0),
i.e. a line inclined towards the positive x, and

fla,y) = y* — v~
We deduce f(x,y) =y' —y* +ax (a < 0).
flz,y)=y' —y* - 1—1030‘ for example, for a slope of 10%.

1.2.3. Planar representation

The shades of gray in a black and white photo are the representation of a
function defined on a rectangle with values in the interval [ 0; 1]: 0 black, 1
white. We speak of planar representation.

Example

Surface and planar representation of the function (,y) = 2 +¢°,
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Color shades are also used in planar representation.

Example ( Weather Maps )

1.2.4. Representation by level lines

Recall that to obtain the partial functions, we considered vertical cuts of
the graph of a function of two variables.

In the same way, we can consider horizontal cuts to obtain plane curves,
called curves or level lines.

Definition (Level lines):
Let K € R And a function f : R* — R; the level curve K of f is the

projection onto the equation plane z = 0 ( plane of (x,y) ) of the
intersection of the representative surface of f with the horizontal

plane z = k,ie. {(v,y,2): (z,y) € Dy : f(x,y) = K}
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In practice, different level curves are
represented simultaneously to

visualize the progression of the graph.

This representation is similar to

geographical maps where the level

corresponds to the altitude.

Example (_Topographic maps )
In the relief of a region, a contour curve indicates points of the same

altitude. By drawing the contour lines with their corresponding altitude,
we obtain the topographic relief map

%t PR L i)
Courbe 940 m I—\ /—-| Courbe 960 m

Extrait de la carte n” 2531 a I'échelle du 1:50000
Equidistance des courbes : 20 m
3 - B

e S
le Grand Suchat ™5
[ -\am I

Jio Petir Suchet?

l > .‘..
A

e Al

[RETa- SoeLsy 3
N
o,
. N
&

Altitude 960 m

.x/i/_ -------- Altitude du Point A
Altitude 940 m

Exemple : ( Weather maps)

On a weather map, the contour

1007

lines are isotherms (lines
connecting points of equal
temperature); or isobars (lines
connecting points of equal

pressure).
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Exercise

1) Determine and represent the domain of definition of the function
f:R* = R defined by /(% ¢) = In(z — y*),

2) Determine and represent its contour lines.

Correction

1) f(z,y) = In(z —y*)
r€D; = r—y* >0

— —

2)

flry) =k <= z-y’=¢

VI <y < +vT.

k

= —Jy=+tvr-C (C=¢">0).

These are translated to the right of the curve
defined by y = ++/x.

2 LIMITS OF A FUNCTION

e
// //_/ k=1

We recall the "Euclidean " distance defined in R*(n=2,3) by

n=2: z=(r1,72) ., y = (yr,50) €R?

n =3: r= (1,19, 13)

y U= (ylt IUQ:CUB) € RQ

Limit at a point in R":

d(z,y) = \/(Jfl — )%+ (22— y2)? + (25 — y3)?

Az, y) == /o — P F (52— 30

Let be f : Dy C R" — R a function and L € R.

We say that the limit of fwhen x tends to X, € R" is equal to I. (we write

lim f(X)=1L

X‘)X(]

for everything = > 0, there exists 6 > 0 such as d(X,Xy) <0 = d(f(X),L) <

or f(X) o L) if:

This limit may exist even if fis not defined in x,.

68

=

Ca


https://fr.wikipedia.org/wiki/Distance_euclidienne

We say that the limit of fwhen Xtends to X, € R" is equal to +oc (we

ite 1i ‘ = (X L) if:
wrzteXILn;(O (X) = +oo or f( )m ) if:

for everything A > 0, there exists 6 > 0 such as d(X, X)) <§ = f(X) > A.

We say that the limit of fwhen X tends to X, € R" is equal to —oco (we
rite i X)=—ocor f(X) — — if:
write Jim_f(X) = ~00 or (X) ——— ~o0) f.
for everything A > 0, there exists § > 0 such as d(X,Xy) <0 = f(X) < -A.
Exercise

By copying from the previous definition give those of:

fRZSR f:R*=>R
1) (wy)—=z=flzy) 2y X =(x1,22,73) = f(X)
Correction

= -
[
Ll

p | B R e
L. i) f W o TE
L1} K

L, h

1) lim f(z,y)=Lor f(x,y) — L if:
(,y)—{(a,b) (,y)—(a,b)

Ve >0, it exists 4 > 0 such as

Viz—aP+(y-b)?<d = |flz.y) - LI <e

2) lim f(X)=Lor f(X)——Lif

X—?’(ﬂ.,b,C) X—}((L,b;t’)

¥ e >0, it exists 4 > 0 such as

V(e —a)? + (2 =02 + (13- b)? <0 = |f(X) - L| <e
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N.B.:

Unfortunately, it's not simple anymore for R" , n > 2, because there are an
infinite number of possible directions to go towards a point X; € R".

A

A
NS
N

Proposition:
Let f : R" — R be a function.

lim f(X)=L ifandonlyif lim f(X)= L for any direction D
XeDh

X‘}XO X Xe XU
(curve in R"passing through X).
Example
oty
We want to calculate lim ——— =7

(2)>00) 22 +y2
Correction

2 2

1) the domain of function f : (x,y) — f(z,y) = :1:_@;2 is the set R?\ {(0,0)}.

x? +y
2) We look for continuous curves defined on R?, which pass through (0,0), and

we calculate the limit of the restriction offto these curves:

i) on the line of equation Y — 0 (x axis) we have:

LL'Q _ 02 1’2

g9(x) 1:f(33a0):$2—+02:P:1

we deduce lim % = lim g(z) =1
w00 T TY 0

ii) on the line of equation * — 0 (v axis) we have:
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02 — 42 B _y?

= =—1
02+ g2 92

h(y) == f(0,y) =

2 .9
LY limh(x) = —1.

x—0

we deduce lim 5 5
()5 00) T T Y

The limit being different in two distinct directions, we deduce that
2 2

T
lim i does not exist.
(2,y)—(0,0) 22 + 12

_ .2
iii) on the equation parabola Y = L we have:

2 4 2

Tt — 1—=x
k(x) = f(z,2?) == = ;

2,2
we deduce lim 55 = limk(z) = +1.
Y2 2+ y? 20
(2,y)—(0,0)

Remark: we have the same limit on two directions (y = 0 and y = z%) but that

does not mean that the limit exists (why?)

Proposition (Unigueness of the limit ):

If a sequence is convergent, its limit is unique.

2.1. Calculation of limits in R?

When n = 2, it is often useful to switch to
polar coordinates

r=a-+rcosf y=b+rsind

to reduce the calculation of the limit of a
function of two variables x and y to the limit
on a single variable r.

lim f(x,y)=lim f(a+ rcos(8), b+ rsin({d))
(x. 1 —{a.b) rﬁjﬂ
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We can then use the following sufficient conditions:

Proposition: (sufficient conditions)
1) If there exists L. € Rand a function s : v — s(r) such that in the

neighborhood of (a, b)we have
|f(a+rcos(f),b+rsin(f)) — L| < s(r) — 0

r—0

then lim x,y) =1L
(-r-.y)%(a,b)f( v)

2) If there exists L € R and a function m : r — m(r) such that in the
neighborhood of (a, b) we have

|f(a+rcos(0),b+rsin(f)) — L| > m(r) — foo

then lim  f(x,y) does not exist.
(z,y)—(a,b)

Exercise

2 2
Show using polar coordinates that lim udoes not exist.
(w.)—(0.0) 2 + /2

Correction

Let's putitdown z = 0+ rcos) = rcosf and y =0+ rsinf = rsinf, we

have
22 —y?  r?cos’d —r?sin®f  cos?d —sin?é
= —— = = cos(26)
2+ 9> r2cos?f+r?sin” 0 1
22 —
consequently lim ——= = limcos(20) = cos(20)

(z.)—(0,0) 22 + y2  r—0
As # is arbitrary we can have any values as limit.
ZEQ — ’Ij2 .
So lim “——=-does not exist.
(,9)—(0,0) 22 + 32
Exercise

3

Do these limits exist: 1) lim 2) lim %
(@y)—(11) T — Y (@) (1.0 (x — 1) +y
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Correction

1
1) Put f(z,y) =
x—y
: : . . T T, I
'a;]i)ril+ k(y) = f(1,y) = ylﬂi e —oo and llinl{ h(z):= f(z,1) = ,Llinllv pomy +00.

The limit does not exist.

2) Put z = 1 + rcosf and y = rsinf, we have

y? r?sin® @ r sinf

= = =1 sinf,
(x—1)2+9y%  r2cos?0 +r2sin®f 1

3
then lim —————— =limr sin(f) =0.
(m~y)_}(l~0) (35 - 1)2 + .yZ r—( ( )

Exercise

Calculate the limit if it exists: lim —————2.
(@y)—>00) ¥y (22 + y?)

Correction

3
Put f(z,y) = %ji)) because of the logarithm, let us approach the origin
y\r= -y

in two different ways, a straight line (z,y = ax)and a parabola (z,y = 2?):

: . In(l+2%) : x In(1 + z?%)

Jim, k) = flw,a) =l oy = oy X S 0x =0
e oxIn(T+at) 1 In(1+27%)

g k(z):=f(e.27) = I ey e X — s b

We deduce that the limit does not exist.

Exercise

2
Let f be the function defined by f(z,y) = % Show that lim f(z,y)=0":
ety (,y)—(0,0)

1) according to the definition (use the Euclidean norm),

2) by comparisons, 3) using polar coordinates.
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Correction

1) V= > 0, we have to find » > 0 such that V&*+¥* <r = [f(z,y) —0[ <¢,
We have

6%yl _ 627 |y| —
f(w)|=,r.z+|ylz = ULJ 6yl <6V T <6,

then if £ > 0 is given, it suffices to take a number r > Osuch that 6r < . (for
example to £ = 0.0001 take » = 0.00001 and to ¢ = 0.0000006 take » = 0.0000001 ...)

2) For everything (z,y) # (0,0) we have

62 |y| _ 62yl
0<[f(z,y)|= EE < o 6 |yl, then
0< lim (z,y)| <  lim 6|y =0.
~ (z)—(0,0) 7@y (x.)—(0,0) Y
Consequentl li (z,y) = I (z,y) = 0.
1 Y (05)2(00) F(-9)l (00) (0.0 f@.y)
, : 6y
3) Let us put x = rcosf and y = rsinf, we have f(r,y) = ——
x? + y?
G2y 673 cos® 0 sind 6r cos®0sind
fay) == 9, = 0
v+ y r2cos? 0 + r?sin“ 0 1 r—0
So i (x = (xz,y) = 0.
() (0.0) #(z9)l ()00 fle.y)

2.2. Continuity

Definition:
1) f : R" — R is continuous at A € R" if

lim f(X) = f(A).

X—A

2)f : R?> = R is continuous on domain D C R? if it is continuous at
every point of D.

Proposition ( Properties ):

v' Continuous functions of several variables enjoy the same properties
as continuous functions of a single variable,
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v'  Elementary functions such as polynomials, exponential, logarithmic
and trigonometric functions are continuous in their respective
domains of definition.

v' The composite (sum, product, quotient etc...) of continuous
functions is a continuous function.
Example :
1) f(z,y) = 2° + y*> — 2y + y is continuous in R? (second degree polynomial in
two variables).
2) f(x,y,2) = e + xy? — z is continuous in R* (sum of an exponential and a
polynomial).
3) f(x,y) = In(x + y*) — 3.
, 2 .
(7,y) €Dy = v+y" >0 = z<0et |y} > /-1

f is continuous on D (exterior of the parabola opposite in the left
half-plane) as the sum of the logarithm of a polynomial

(compound function) and a constant.

Exercise

the multivariable J/function be defined on R? by

3 3
ro i S #00

0 si(z,y)=(0,0)

f is it continuous on R??

Correction
: + P, . - .
For (z,y) # (0,0) the function (z,y) — o ? ;is rational therefore it is continuous on
22 +y
2
R*\ {(0,0)}.

To study the continuity at the point (0, 0), let us put * = rcos# and y = rsin 6, then
for (z,y) # (0,0) we’ll have
2+ 13 cos? O 4 13 sin® 6 B cos® @ + sin® 0

f(a‘?,y)z =

G T =T
w24+ y?  r2cos?f + r2sin’f 1 r—0

> 0
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so lim f(x,y) =0 = f(0,0)where f continues at (0,0).
(z,y)—(0,0)

Function [ is- continues on R2,

2.3. Theorem extreme values

Theorem : (Extreme Values)

Let D C R™ compact (i.e. closed and bounded) . If a function

f: D CR"— R is continuous then it admits a maximum and a
minimum (“extreme values”) on D C R"; i.e. it exists X,,, X, € D such
that (VX € D): f(X,,) < f(X) < f(Xu)-

o4

3 DERIVATION AND DIFFERENTIABILITY INR"
3.1. Directional derivatives

The unique derivative of a function f : R — R, when it exists, is linked to
variations in the function as the variable travels along the x-axis .

It is given by

Ay

i DY _ oy FE ) — f(2)
h—0 h h—0 h

Note that the real axis offers only one possible direction of movement
(horizontal).

For a function with two variables [ : R? — R, whose graph is a surface of

R3, the situation is very different. In fact, in the plane R? there is an
infinity of possible directions.
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It may be interesting to study how a function f : R> — R involves when the
variable follows one or the other direction of the plan. We can then speak of
a directional derivative of the function f, which is given by the limit of the
rate of increase when fits argument (x, y) vary in a fixed direction:

limg — lim f((z,y) +hV)— flz.y)
h—0 h h—0 h

where VV € R? is a given direction.

N.B.: for reasons of simplification we will now treat the case n=2 (possibly
n=3). The general case is done in the same way.

In this case the previous limit is written when V' = (a, b):

h—0 h

3.2. First order partial derivatives and gradient

The set of variables ( the plane R?in our case ) being provided with two
reference directions ( V;, = (1,0) for x axis and V, = (0,1) for y axis ) gives
special interest to the derivatives in these directions which will be called
partial derivatives.

3.2.1. Partial derivation

Definition: ( Partial derivatives )

Let us be a function with multiple variables and real values f : R> — R
defined on an open domain D C R? and a point (o, y0) € D.

v' The partial derivatives of f at (zg,yy) is the derivatives of the partial
functions f,, : x — f(x,yo) and f,, -y — f(zo,y) i.e.

1) partial derivative of f with respect to x at the point (xy, y;):

. T f(xo + h, o) — flzo, o)
g (T0: %) = iy 2 -

2) partial derivative of f with respect to y at the point (xy, y5):

af . flxo,wo+h) = flzo, )
@—y(-ro, yo) = lim - :
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‘ v' If all first partial derivatives of fexist, we say that f is differentiable.

Notation : the partial derivative % ( respectively g—Z) is also notedd, f (

respectively 0, f) or ]‘; ( respectively f;)

Remark :

In practice, to calculate the partial derivative % (resp. g—Z) we derive f such

as it is a function of the single variable = (resp. y) with the other variable,
y (resp. x) considered as constant.

Example :
Let the function be (z,y) — f(z,y) = 4 — 2* — 2y*. We have

oy O R PR
fule) = Gr(ey) = =20 and fia.y) =50 (ny) = .

Exercise

The annual production of wheat B depends on the average temperature T
and the average precipitation R. Scientists estimate that the average
temperature is increasing by 0.15 °C//an and precipitation is decreasing by
0.1 em/an. They also think that for the current level of production B(T, i) we
have ;B = —2and dzB = +8.

1) Write in terms of ratio the variations of temperature and precipitation?
2) What do these partial derivatives mean?

Exercise
Correction

.. : dT’
1) The average temperature is increasing at a rate of 0.15 °C//an: == +0.15.

. dR
Precipitation decreases by 0.1 em/an: Frie —0.1

2) . 9yB = —2: An increase in average temperature (while keeping annual
precipitation constant) results in a decrease in wheat production at current
production levels.
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OrB = +8: an increase in annual rainfall (while keeping the average
temperature constant) causes an increase in wheat production.

3.2.2. Properties of partial derivation

Properties: (of the partial derivation)

Partial derivatives have the same properties as derivatives of
functions of a single variable. Especially:

v' Elementary functions such as polynomials, rational and irrational
functions, exponential, logarithmic and trigonometric functions are
differentiable in their respective domains.

v’ The sum, product, quotient, etc. of differentiable functions is a
differentiable function.

v' The derivation rules are similar to the derivation rules with a single
variable, (except that relating to the derivation of compound functions
which are less simple to define).

Example
1) Let f defined by f(z,y) = 32* + zy — 2y%. f is continuous and derivable
(polynomial function):

: d
y considered constant we obtain: f.(z,y) = a—i(m, y) = 6z + .

2 considered constant we obtain: f;(:r, y) = 8—($ y) = x — 4y.
Y

2) Let f defined by f(xz,y,2) = bzzIn(1 + Ty). f is continuous and derivable
(compound of polynomials and logarithm):

y and z considered as constants gives:

N d
0.1 = 1(o.4) = 2L{a.y) = 5:1n(1 + 7).

x and z considered as constants gives:

of 7

Oyf = f;(:;;y) = a—y(ﬂiu) = 551:21 .

79



x and y considered as constants gives:

0.0 = f(r.9) = P (e.0) = 51 4 7),

3.2.3. Gradient

Definition: (Gradient)
The gradient of the function f : R" — R evaluated at the point

A = (ay,as,..,a,), noted V f(A) (reads nabla [ at point A ) or again

grad f(A), is the vector whose components are the first partial
derivatives of [ :

O, |
a;czf T
VI(A) =gradf(A)=| e C R N N b
Op, f
It is orthogonal to the level curve of f passing by A.
Example
1) Consider the function f : R? — R defined by f(z,y) = 2> + .

The gradient of fis the vector Vf(z,y) = grad f(z,y) = (2, l)T.

2)Consider g(x,y) = 2 then

{ g(z,b) = 2* parbola

gla,y) = este  horizontal line

We obtain the representative graphic Cg of ¢
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One can deduce the curve of f resulting on
the inclination +45° because of value along
y-axis

f(z,b) = x* parbol
fla,y) =y oblique line

The level curves of the function are given by
flx,y)=2*4+y=4k, kekR.
It is a family of parabolas of equations
y=—-a2+k, keR

The gradient is orthogonal to the level curve
which passes through the point (x, y).

In the figure above we consider the point (—1, 1) in the contour curve & = 2

which has the equation y = —2? + 2. We have in this point
Vi1 = grad -1 = (),

The line tangent to this curve at the point (—1, 1) has the equation y = 2z + 3

which is orthogonal to grad f(z,y). Indeed, the direction vector of the
tangent is v — G) hence the scalar product Vf(z,y) . V = (=2)(1) + (1)(2) =0,
which proves that the two vectors are orthogonal.

Exercise
Calculate the partial derivatives of order 1 of the following functions and
write the gradient:

1) f(z,y) =y’ —3zy, 2) f(z,y) =2 +3zy* — 6y°, 3) f(z,y) = xcos(e™),
4) f(z,y) = g 5) f(x,t) = e cos(m x).

Correction

1) For (,9) € R’we have:

Ouf(x,y) = =3y and 8yf(xa y) = 594 - 3$_

Vf(z,y) = grad f(z,y) = <5y4_iy3$)

81



2) For (7.9) € R%ye have:
Ouf(2,y) = 2 + 3y qng  Ouf (@, y) = 6xy — 304"
B o 2+ 312
Vf(ﬂf‘ y) _ gradf(a:y) - (ny _ 30y4)

3) For (#.%) € R*ye have:
0. f(x,y) = cos(e™) — zye™ sin(e™?) and 9uf(x,y) = —22e*¥ cos(e™)

cos(e™) — xye* sin(e™
Vf(l', y) - gT‘CLdf(I, y) - ( ( _x)QezL'y gOS(GIy)( ))

4) For (z,y) e R\ {(z,0) 1z € R}We have:

1
arf(l'y) = gand 8yf($,y) = ;
1
Vi(z,y)=gradf(x,y) = 791;
2

5) For (z,y) € R\ {(z,0) : € R}yve have:
Opf(x,t) = —me 'sin(z) gpng [fla,t) = —e ' cos(mx)
—met

Vf(z,y) = grad f(z,y) = (—e‘* cozl(nﬂ(iD

3.2.4. Derivability and continuity

Unlike R, in R" | n > 2 the derivative existence (derivability) is independent

of continuity.
1) f: (w,y) — fz.y) = |2] + |y if (2,) # (0.0) and f(0,0) = 0 is continuous and
not derivable at (0,0).

2) f(x,y) = e if (x,y) # (0,0) and f(0,0) = 0 is derivable and not

continuous at (0,0).
3) flz,y) = Wif (z,4) # (0,0) and f(0,0) = 0 is neither derivable nor

continues in (0,0).
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3.2.5. Class function C'

Definition: (class €
If a functionf : D C R" — R is derivable and its partial derivative

functions 0,,f , i =1,..,n are continuous on D, we say that f is of
class €' on D and we denote f € C'(D).

3.3. Compound functions

Recall that the compound function of f and ¢ is defined as follows:
vtz (fog)(t) = flgt)]
Similarly for a function with multiple variables (x,y) — f(x,y), the

variables = and ¥y can be functions with one variables ¢t € R (or many
variables).

3.3.1. Case of a single variable

compound function :
Consider the function f : R?> — R, (x,y) — f(x,y) where the variables

x and y are functions with variable t € R. We pose

J((t), y(t)) = g(t),
If the partial derivatives 0, f and . f of [ exist and as functions (from R
toR)t — x(t) and t — y(t) are derivable, then the function
g:t—g(t):= f(z(t),y(t)) is derivable and we have

_of of

(0) = 5 (o0 y(0) x 2'0) + 5 (D). 9(0) x /(1)

N.B.: it might be simpler to remember this using differential notations:

dm—%m—%wmmm—%@wmmx§w+%wmmmx%@
Example

Annual wheat production B(7, R) is a function of the average temperature T
and the average precipitation R. Scientists estimate that 9,8 = —2and
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drB = +8. Knowing that the average temperature is increasing by!-15 °C/an
and precipitation decreases by (.1 em/an; estimate the current rate of change
in wheat production dB/dt .

Correction
The current rate of change in wheat production is dB/dt

dB 0B T 0B

dR
“ETE.R0) = 52T R) x Sol0) + 5

o (T R) x —=(t).

. dT
As the average temperature increases at a rate of 0.15 °C/anwe have = = 0.15;

e dR
and as precipitation decreases at the rate of 0.1 em/an: i —0.1; from where

@(T(t),R(t)) = 9rB(T,R) x (0.15) + 9z B(T, R) x (—0.1)

dt
=(=2) x (0.15) + (8) x (=0.1) =~-1.1
Exercise

Calculate ¢/(t) in the following cases:

1) 9(t) = f(x(t),y(t) , flz,y) = 2" +y° +ay, x(t) =sint, y(t) = e
2y 9(t) = f(x(t),y(t) , flz,y) = cos(z +4dy) , x(t) =5t", y(t) = {

3 0(0) = F(a(t) o(0), 20)) . F(ry,2) = 2l (t) =, yft) = 1t =(t) = 142t

4y 900) = F(w(t) y(0). 1) . fla,,2) = (/P 2+ 2, 2(t) =sint , ylt) = cost, =(t) = tan.

Correction
1)
g(t) = fo(x(t),y(t) x 2'(t) + f,(x(t), y()) x ¥ (t)
= (2z +y) x cost + (2y + ) x €'
= (2sint + €') cost + (2¢" + sint) e’
2)

g'(t) = fo(@(t),y(1)) > 2'(t) + f,(x(2), y(1)) > '(¢)
i —1
= cos(x + 4y) x 20t + 4 cos(x + 4y) x =
. 4
= 20t* cos(x + dy) — P cos(x + 4y) .
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3)

J(t) =

4)

Fea(®),y(t), 2(8) x 2'() + fy(x(t) y(t). 2(1) x y/(8) + f1(x(8), y(2), 2(2)) x 2'(1)

= 1010420 5 9y 4 Tenlz o (—1) 4 —_fgyey/z 9

Z A

— |9 — t2 B lfQ(l - t) e(l—i)/(l-}-?t) _ 8t3 + 5t2 + 2t (1-)/(1+2t) .
L+2t (1+2t)° (1 +2t)2
g'(t) = fila(t), y(t), 2(1)) x 2'(8) + fyla(t), y(t), 2(1)) x y/'(8) + L1((), y(t), () x 2'(t)

3.3

1 2x y t+1 2y ><( 'tH—l 2z y 1
= s X8t + c5———— X (—sint) +

222+ y? + 22 202+ + 22 202+ 4 22 cos?t

12s8int x cost 12cost xsint 1 2tant 1

= - - - X —
2 1+tan’t 2 1+tan’t  21+tan®t  cos?t

1 2tant 1 _l 2sint cos? t 1 sint

=— — X = — X = .
2 1+tan?t = cost 2 cost cos?t+sin®t cos’t  cost

2. Case of two variables

Compound function :

Consider the function f : R?> — R, (x,y) — f(x,y)where the variables
x and y are functions with two variables u,v € R. We pose

f(x(uv U)r y(u: U)) - g(uv U)'

If the partial derivatives 8, f and 0. f of f exist, the partial derivatives
d.x and 0,z of xand the partial derivatives 9,y and O,y of y exist, then
the function

g:t— g(u, ’U) = f(x(u?v): y(u,v))

is derivable (i.e. admits partial derivatives) and we have

%(u’ V) = %(m(u. v),y(u,v))

= 5 010.900) x G 00) + 3 (w0090 S )
%(ij) = g—i(x(u U),';U(U,'U))

= (a0 000) x r0.0) + 5 (). 000) x a0
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Exercise
The functions f : R — R and ¢ : R — R being given, calculate 0,¢(z,y) and

dyY(z,y) in the following cases:

1) Y(z,y) = f(x) +9(y) 2y ¥(x,y) = f@)gly) | 3),

g y) =fla+2y) 5oy =flay gY@y =1)
Correction
].) 8:!:1:[)('7"1 y) - f,(T) and (()’yw(‘rv y) = .gf(I)
2) hti(z,y) = f'(x) g(y) and Sv(x,y) = f(x)g'(2),
f! f(x) g'(:
3) 0u(w,y) = g((;)) and 0. (7, y) = —%-

4) 0:0(@,y) = f'(x +2y) ang  Ow¥(x, ) = 2f'(x + 2y)
5) Gut(z,y) =y f'(xy) and G¥(z,y) =z f'(zy)
6) Optp(w,y) = if!(i) and Oyp(x,y) = _y% f’(g)

3.4. Differentiability

Differentiability at a point corresponds to the existence of a linear
approximation of the function at that point.

For a function f : R — R (with a single variable), geometrically this
corresponds to the existence of a line tangent to the graph in the
neighborhood of the point (zg, f(z()). We know that there is equivalence
between differentiability and derivability.

In the case of functions of several, the equivalence disappears between

of of
(derivability) the existence of partial derivatives (,}{(lfo,yo, )y a*y(fﬁo-.yo«. ..), etc...

and existence of a tangent plane.
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3.4.1. Differentiable function

Definition: (differentiable function)
Let f be a function with multiple variables and real values defined on an

open set D C R? and let (g, 1) € D.

We say that f is differentiable at (zg,y,) if there exist two constants
A, B € R such that

flmo+h,yo+ k) — f(zo,90) = Ah+ BE+o(||(h, k)]

N.B.: remember that o(||(h, k)|) = ||(h, k)| e(h, k) with ¢(h, k) —— 0 where
h,k—0

I(h, k)|| = VA2 + k2 (we can use another equivalent norm like [[(2 )|l = max(|h], [k[)),

The application (h, k) — Ah + Bk is linear and it represents an
approximation (linear approximation or approximation of first order)
of f in the vicinity of (zo, yo)-

Remark :

If f is derivable at (zg,y) i.e. partial derivatives 0, f(x¢, yo) and 9, f (¢, yo)
exist, then the linear map

(h k) — an(iUU. yU) h + ayf(mﬂu y()) k

is candidate to be approximation (linear or of first order) of f in the neighborhood
of (zo,4o). To confirm, just check if

flzo+hoyo+ k) — fzo, o) — Ouf (0, y0) h — Oy f (0, o) k
Vh?+ k2 (hk)—(0,0)

> 0

Exercise

Using the definition, verify that the f : R> — R following functions are
differentiable at the point (zg, yo):

1) f(zy) =2y —32%, (w0, 90) = (1;2), 2 flz,y) =2y —3y*, (zo,40) = (2;1)

3) [l@,y) =y v, (xo,y0) = (41), 4, f(@.y) =y In(l + ), (x0,50) = (0;0),
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Correction

]-) We have f("[’*y) =Ty — 33"2 ) (31'013)'0) ( )
0.f(z,y)=y—6r = 0,f(1,2) =4 and 0, f(z,y)

E(h, k) = flzo+hoyo + k) = fzo, w0) = Ouf(0,y0) h — 0y f (20, y0) k

2)=-1,

2), [,
=1 = 0,f(1,2) =1 then

h? + k2
C(M+R)2+E) =301+ h)2—(-1) = (4 h -1k
N R
_ 2+42h+k+hk—3-6h—3h"+1+4h—k
R ViR

—3h% + hik B —3r? cos’t + r? costsint _

Vh? + k2 r\/cos?t + sin’t

4 2
we deduce |E(h, k)| < — =4r — 0. Therefore (z,y) — f(z,y) = 2y — 327 is
r

r—0

differentiable at (zg,y) = (1;2).

2) We have f(z,y) = zy —3y* . (zo.0) = (21), f(2,1) = -1,
0. flz,y) =y = 0,f(2.1)=1and 9, f(z,y) =2 — 6y = 0,f(2,1) = —4 then

E(hk) = [ (o + hyyo + k) — [, y0) — 8 f (o, y0) b — 9, f(wo, yo) K

_ (2+R)(1+k)=3(1+k)?—(=1)—1h—(-4)k

24+ h42k+hk—-3-6k -3k +1-h+4k

Vh? + k2
—3k> + hk B —3r?sin®t + 1’ costsint _

VhE+ k2 r\/cost + sin’ t

2

4r
we deduce |E(h k)| < — =4r —O>0 therefore (z,y) — f(z,y) = zy — 3° is
r r—

differentiable at (zg,y) = (2;1).
3) We have f(z,y) =y, (m0,50) = (41), f(4,1) =2,

0, /(o) = 2( = 0, f(L1) = iand 0,f(2.y) = V& — 0,f(2,1) =2 then
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flwo+h,yo + k) — flzo,y0) — 0o f(xo,y0) h — Oy f (w0, y0) k
N

(L+MM4+h—2—ih—2k

E(h. k) =

2(1+ k) 1+22ih2k
Q+2@U+%+ommn—2—ih—2k

n 1
2+g+2k+%b+&%ﬂoun—2—ih—2k

8

N k)h
4+ o ()

 2rfcostsint + 2costo (r) + 2r¥ cos* tsint o (r)
8rv/cos?t + sin’t J

rofr) ro(r) .
-+ + » (; therefore (z,y) = f(z,y) = yy/7T iS
4 dr 4 =0

differentiable at (z,y) = (4;1).

we deduce |E(h, k)| <

NB: we used the equivalence /1 + % =1+ g + o(h/8) near 0.
4) We have f(x,y) = [yl (1 + ) , (z0,30) = (0;0) f(0,0) =0,

2f(r0) = T = 07001 =0 and 0,/(r.5) = £In(1 +4) = 3,/(0,0) =0 then

flxo+hoyo+ k) — flzo, o) — Ouf(zo,y0) b — Oy f (0, y0) k
Vh? + k2
k(L4 h)—0—0xh—0xk

Vh?+ k2

k[ (h+o(h))  r*|sint| cost+r|sint| cost o(r)

E(h,k) =

VhE 4+ k2 ry/ cos?t + sin’ ¢
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we deduce [E(hk)[ <7 +o(r) j O; therefore (z,y) = f(z,y) = [y| In(1 + z) is
differentiable at (z,y) = (4;1).

NB: we used the equivalence In(1 + ) = h + o(h) near 0.

Definition: (the differential)
Let f a function be differentiable at (xy,y,). The linear application

df (xo, yo) defined by

df (o, yo) = a’i(IO,yo) dx + 8;;(580: Yo) dy
is called differential function of f at (zg, yy)-

Example
Consider the function f : R? — R defined by f(z,y) = 1 + 22 — zy.

[ is continuous and differentiable ( polynomial function ); we have
gi(:ﬂo: Yo) = 270 — yo and gi(;ro,yo) = —1y. The candidate linear map to be the
differential is the function 9 : (h. k) = g(h. k) = (2x0 — yo) h + (—z0) k,
Flao+hyyo + k) — flzo.yo) = 1+ (zg +h)? — (2o + h)(yo + k) — 1 — z3 + 20
= x5 + 20ph + B — 2oy — hyy — ok — hk — 25 + Toyy
= Ql'uh + h2 - hy(_] - 'I(]kf — hk
= (2zg — yo) h — 2ok + (h* — k)
= g(h, k) + (h* = hk) .
2 _
In addition we have lim I — hk

hk—0 £/h2 + k2

(zo.90) being arbitrary, we have just shown that f is everywhere
differentiable and that its differential is defined by

df(z,y) = 22 —y)de —x dy

— 0, therefore (h? — hk) = o(||(h, k)|
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Example

Consider the function f : R? — R defined by f(z,y) = 2 + .
[ is continuous and differentiable (polynomial function).

0 af
We have ai(l’oayo) = 2ry and ai(iﬂozyo) = 2yp.

f@o+h,yo + k) — flwo,y0) — h 0o f (o, y0) — kO f (0, 40)

(h-,kl)lgfo,m NEEYE
po @R+ (g + k) — 25— g5 — h 2w — k240
(h,k)—(0,0) m
lim 20 + 2wh + h* + yis + 240k + K — i — yig — h 200 — k20
(h,k)—(0,0) \/m
h? + k?

li —= i V2 +E2=0
(h-,«k)lg%oao) Vh2 + k2 (hak)lg%ﬂﬂ) "

Consequently, f is everywhere differentiable and has the differential

df (z,y) =2z de + 2y dy
3.4.2. Class ct implies differentiability

Theorem: (/ € C'stronger than differentiability)

Let f : R? — R be a function defined on an open set D C R? and let
(z0,%0) € D.

If f is of class C in the neighborhood of (xy, ) (partial derivatives exist and
are continuous) then f is differentiable at (zg, ).

Example

Consider the function f : R? — R defined by

2,2
fag) = A ag S @) #0.0)
o 0 si(ay)=(0,0)

Show that f is of class C''(R?)? is it differentiable?
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Correction

/ continuous ?

For (x,y) # (0,0) the rational function with non-zero denominator
2,2
€T

is continuous on R?\ {(0,0)}.

T, Y) — — -
(r9) =m0

For (z,y) = (0,0)

. : r? ~ rheos?t sin®t o
lim f(z,y)= lim ——=Iim = limr

2, o2
cos”t sin“t = 0.
(2,)—(0,0) (29)-(00) 22+ y> =0 72(cos?t +sin®t) =0

f is continuous at (0,0). So f is everywhere continues.

[/ derivable ?
For (x,y) # (0,0) we have
2a (2% 4 y?)y? — 2% (2x)y? 2y

(I: y) — azf(xy) = (IE‘2 i y2)2 = (332 +y2)2;

3;23;2%_221_:522,‘2 21174
(z,y) = Oy f(z,y) = (2° +y7)2y — " 2y)y _ Y

(22 + )2 @+
For (z,y) = (0,0):
h? x 0

_ o JO04R,0) = f(0,0) 0 R2402

9:f(0,0) = lim ] = fim = =0
0 x k?

L f(O-I—h,U)—f(0,0)_ 0+

9,4(0,0) = Jim h = = =0

/ is differentiable at (0,0). Therefore is everywhere differentiable.

Class C'(R?) 2

2xy’

e and

Partial derivative functions (z,y) — 0, f(z,y) =

27t .
(z,y) = 0y f(z,y) = (lgf_iz)z are continuous on R?\ {(0,0)}as rational functions

with non-zero denominators. f € C'(R*\ {(0,0)}).
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For (x,y) = (0,0)

2yt 29 cost sintt
lim  0.f(x,y)= lim % — Jim — 2 51.n2 = lim 2r cost sin’ t = 0.
(2,9)—(0,0) (2,)—(0,0) (:E +y ) r—0 7*4(0052 t + sin t)g r—0
2 Y . 2rd costt sint

lim J,f(z,y)= lim ——===Iim = lim 2rcos' t sint = 0.
(,)—(0,0) of(@:9) (wy)—(0.0) (22 +y2)2 120 pd(cos2t +sin’ )2 =0

Partial derivatives are continuous at (0,0). We deduce the partial derivative
functions 0, f(x,y) and 9,/(z, y) are everywhere continuous and hence f € C'(R?).

[ differentiable ?
Since f € C'(R?) then f is differentiable because classe C' = dif ferentiable.

N.B.: The converse is false. /can be differentiable without being of class !
3.4.3. Tangent plane and linearization

The notion of differentiability corresponds to the geometric notion of a
tangent plane. Indeed, when f is differentiable at (zg, y), we can, in a

neighborhood of (zg, ), approach f(xo + h,yo + k) by f(xo,v0) + df (xo,y0)(h, k).

This corresponds geometrically to approaching the representative surface
of f, in the neighborhood of (zg, 1), by the plane of equation

z = f(ﬂD‘[), yo) + df(ﬁl?(], yU)(hv k)

The representative surface of the function (%) = f(z,y) = 22° +y seems to
coincide with its plane tangent to the point (1,1, f(1,1)) when we zoom
towards this point .
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Definition: (tangent plane)
Let be f : R?> — R a function defined on an open set D C R? and
differentiable at (xy,1,) € D.

The equation of the tangent plane, at (x,,y,), to the graph of the
function f is
. 0 2]
z = f(xo,y0) + a—i(l‘oayo) (z — xo) + 8—5(370,?10) (¥ — %)

||' | Fe b4 B
’ len 4+ N B+ k) I-._ Bistarce VS + 5
Example
Consider the function f : R? — Rdefined by
r+y
Ty = ———s.

1) Determine and represent its contour lines.

2) Calculate its first partial derivatives.

3) Write the equation of the tangent plane to/ in (0, 0).
Correction

Tr+y

_ Tty
14224 y?

D f(z,y) =k = aty=0(k=0)V1t+a’fy’— — =0(k#0).

The level curves of | are the equation line y = —x for k = 0 and the equation
1

1
curvesl+$2+y2—gm—gy:0.

1 1

1 1
Lt (2% =202) + (¥ = 2570) = (0 — )+ (@ — o) +1— o5
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These are circles with center (5., 5:) and radius r = /5 —1 with 0 <k <1/2.

1+ +y%) — (z+y)2z  1—a®—2ay+y°
(1+ 22+ y?)? (T4 22+ 92)?

Z)amj(xa y) =

I+ +y°)—(x+y)2y 142* —2zy—y°
(1+ a2+ y?)2 (L2 y?)

and 0, f(x,y) =

3) the equation of the tangent plane to f in (0, 0) is
2= f(0,0)+20.£(0,0)+y3,£(0,0)  that is 2=r+y
Definition: (linearization)

Let be f : R?> — R a function defined on an open set D C R?
and differentiable at (xg, 1) € D.

We can approach the function f, in the neighborhood of (zy, yy), by an
dffine function:
. af of
L(a.9) = F0s ) + 5 (. 90) 2 = 20) + 5 (0, 30) (0 = )
The function (h, k) — E(h,k) = f(zo+ h,yo + k) — L(zo + h,yo + k)
measures the error we make at the point (xo + h,yo + k) when we
approach the value of | by the value of L; and since f is differentiable

. _ B(hk)
n (3}'0: yo). then h,l,};gl() \/ﬁ =0.
Example
Consider the function f : R? — R defined by flx,y) =ze"".
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1) Show that f is differentiable and give its differential.

2) Give a linear approximation ( of order 1) of f(x,y) in the neighborhood
of (1,0). Deduce an approximate value of f(1.1,—0.1)

Correction

1) f is composed of differentiable functions so it is differentiable.

We have 0, f(z,y) = ¢"¥ + zye” and d, f(r,y) = 2° ¢“Y hence the differential:
df (x,y) = Ouf (x,y) dv+ 0, f (x,y) dy = (e"Y + zye”?) dv + (z? ") dy.

2) Linearization f (linear or order 1 approximation) in the neighborhood of (1, 0) is
S+ 1,0+ k)~ df(1,0)(h, k) = f(1,0) + 0, f(1,0) h +0,f(1,0) k

Thus f(1+h,0+k)~1+h+k; i.e. in the neighborhood of (1,0) we have

re'l x~x+uy.

We deduce f(1.1,—0.1) = f(14+0.1,-0.1) =14+ 0.1 - 0.1 = 1.

With a calculator we can see that f(1.1,—0.1) = 0.985...

Exercise

Knowing that a function f : R* — R is differentiable and that f(2,5) = 6,
d.f(2,5) =1, d,f(2,5) = —1, give an approximate value of f(2.2,4.9).

Correction
The function being differentiable, we can give an order 1 estimate of f.
In the neighborhood of (zy, ) = (2,5) we have

fla,y) & fzo,y0) + 0.f(2,5) (x — 20) + 0, f(2.5) (y — o) =6+ (2 —2) = (y — D).
Especially f(2.2,4.9) =6+ (0.2) — (-0.1) = 6.3.
Exercise

We measure a rectangle and we obtain a width of 30cm and a length of
24cm, with an error of at most 0.1cm for each measurement. Estimate the
area of the rectangle.
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Correction

The area of the rectangle is given by the function f(x,y) = xy with x the
width and y the length (in cm). The function is differentiable so by
linearization we can give an estimate of order 1 of the area f(zx,y).

For (h,k) small enough we have
flea+hy+k)= fle,y)+ 0 f(x,y) h+ 0y f(x,y) k= xy+yh+axk.
therefore , for h, k € [—0.1,0.1], we have (noticing that f is increasing for each argument)
f(304+0.1,24 + 0.1) = 30 x 24 + 240.1 + 300.1 = 7254,
f(30 —0.1,24 — 0.1) & 30 x 24 + 24 (—0.1) + 30 (—0.1) = 714.6.

The area (denoted A) of the rectangle is between 714.6 cm® and 725.4 cm?.

4 MULTIPLE INTEGRALS
4.1. Functions with two real variables

4,1.1. Fubini’s theorem

We now present the integral of a function of two variables, called a
double integral, and we show how to evaluate it.

Let @ and 1 be two continuous functions on [a, b]

W(x)

with ¢ < 1. v,

Denote €} the set of points (x,y) € R? such that
a<z<b et px)<y<YP(r), then

i ¥l
3 -
~h o~ i

[ wix)
’ ﬂf[x.}-']ldxd}: f ’ flx,y) dy dx.

Ja Jgplx)

Fubini’s theorem: If the domain allows it, we can swap the roles of x and y:
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Let  and v be two continuous functions on [c, d] ¥

with ¢ < 1. ; PLy)
Denote ) the set of points (x,y) € R? such that
olr) <x <y(x) et c<y<d, then Q)
e rd pr(y) c
JI L flx, y) dedy = 1 I flx,y) dx dy. w(y)
JJ1 Joo Jpl(y) -

Example
Let be €2 = [0; 1] x [0; 2]; we want to calculate the double integral

/f xe™ dx dy.
Q

Notice :

Sometimes, by using the Fubini’s theorem, reversing the order of
integration over an elementary domain, a double integral that is difficult to
evaluate becomes relatively easy to solve.

Example

We want to calculate the volume of the solid which rises on the domain ¢} of
the plane Oxy delimited by the equation line y = 22 and the parabola y = z°a
nd covered by the paraboloid z = 2% + 32

The domain ¢ is therefore delimited:

vertically by the paraboloid z = 22 + y?and the plane z = 0;
laterally by the line y = 2z and the parabola y = 22 which meets at
(z,y) = (0,0) and (z,y) = (2,4) (it suffices to solve y = 2x = 2?).

98



Then, the volume is given by

First method:

Le domaine {2 peut étre décrit par

Q={(z,y) eR? : 0< <2, 2> <y< 2}

/2 {;L‘2 (21:)+(23L)3 — 2 (2%) + g] dx

0

/2 {;Eﬁ o 14 :.33} q VT z° N 14x'1]d“2
= T _ r=|— — — _
s L3 T T 91 5 12 leo

2 2z 1 O S
V:/f$2+y2 d;rdy:[ (f ($2+y2)dy)d;r:/ [:rzeri]} 2, dx
Q J0 x? 0 3 Jy=a?

V= //;1:2+y2 dx dy.
JJa

Second method.

Le domaine () peut étre décrit par
1
Q={(z,y) eR* : 0<y<4, Jy<w<y}

. y
1 4.3 p=t
1/'//$2+y2('lmfi-y/ (/2(-1:2+y2)d1r)dy/ V—%—yzx} 2 dx
Q 0 o o L3 =y

v

=.[: {£+£@+yg(\/§)]dy

207 3

3 507
f@iﬁ%w{%jﬂgﬁw
AT 106 T 7T L
216
3

4.1.2. Special case (separable variables)

If Q2 is the rectangle [a,b] x [¢,d] and if f can be written in the form

f(x,y) = g(x) hy),

f[?mmw@=£2mwx[%@@
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Example:

Let Q=[0,1] x [0,2], we want to calculate the double integral ffg ry dx dy.

We have
1 2 1 2
// dxdyz/ / xydxdyz/ a:d:z:x/ ydy
Q 0 Jo 0
$21 y22

0
L% 5l,=3
= — X — —_— =
210 210 2
4.2. Applications

Definition: (Area)

Let a set D C R?. The area of D is given by the integral

/ / 1 dx dy.
D
Example (Area of a disk)

Let us calculate the area of a disk D of radius R > 0, we place ourselves in a

coordinate system centered on the center of the disk, which therefore has
the equation x? + y? < R?. So

D ={(x,y) ER?: x>+ y* < R*}= {(r,0) € Ry x[02r[: r < R}

2 ~R 27TR2
ff 1dxdy=f frdrdé?:f — df = m R?
D o Jo o 2

Définition 35 (Volume) L'intégrale triple [[[|, 1 dx dy dz mesure le volume de V.

Definition: (Volume)

Let a set V C R3 . The volume of V is given by the integral

f / / 1 dxdyd-z.
Vv
Example (Volume of a sphere)

Let us calculate the area of a volume of a ball B; of radius R > 0 (without
restricting the generality we will assume it centered at the origin)
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DRZ{(X,Y,Z)ERZ: x% + yz + z2 < RZ}
= {06,0) € Ry x [0.2mx [/, /5 [ 7 < R}

Jlf aeavss = [ 7 [ omtorarana
- (/ZZCOS(cb)dd)) (/O%ldéi) (/Oﬂmr)

R 4 .
=2x?2 — — ZnR3
X ZT X 3 37r
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Chap 5: Maitrices.

1 DEFINITIONS
Definition:
v' A matrix A is a rectangular array of elements of K =R or K = C.

v' It is said to be of dimension m x n if the table has m rows and n
columns.

v' The numbers in the table are called coefficients of A.
v' The coefficient located in the i-th line (line number i) and in the j-th

column (column number j) is noted a;; .

v' The zero matrix, denoted Om,n, is the matrix whose all elements are
zero.

v' Two matrices are equal when they have the same size and equal
corresponding coefficients.

v' The set of matrices with n rows and p columns with coefficients in K
is denoted Mm,n(K).

Notation: we will denote

ai Cllj ... dip a1 C"lj ... A1p
A= i C"ij dip A= aip ajj dip
dm ... Clmj . Umn or dp1  --- Omj ... Opp

: A= (a:)1: A= la:]e:
Or more simply ( ”)Eﬁl’ or [ffu]%sgg.
We can find A = (aij) or A = [, if there is no confusions about dimension.

Examples.

1 -2 5
1) Matrices of dimension 2 x 3. A=( 0 3 7 ) a11=1 and @s=7,

-1 4 2
2) Square matrix of order 3. A= ( (i 1 4) ags = ags = L.



Particular matrices: Here are some interesting matrix types

v'If m = n (same number of rows as columns), the matrix is called a square
matrix. We note Mn(K) instead of Mn,n(K).
The elements ai,i, azz,..., ann form the main diagonal of the matrix.

v A matrix that has only one row (m = 1) is called row matrix or row
vector. We notice it A = (a1, aiy, ...ai,).

v' Similarly, a matrix that has only one 21’1
2,1
column (n = 1) is called a column matrix A=l .
or a column vector. a, .
v We call diagonal matrix any square 1 0 0 0
matrix D = (dij)1<ij<n such that dij = 0 for D= g —08 0 g
. : (
all i # j. We notice it Diag(di, dz, . . ., dn) 0 0 0 0
1 0 0 0
v The matrix of order n, denoted In, is the =% L 00
. . : 00 1 0
diagonal matrix Diag(1,1,...,1). 00 0 1

Kronecker symbol :. If i and j are two integers, we call Kronecker symbol, is

the real number Jij, which is 0 if i is different from j, and 1 if i is equal to j.

0 si i#]j
61'11':{

1 sii=j.

Then the general term of the identity matrix I is &ij .

v’ We say that a square matrix A = (aij)1<i,j<n

1 2 3 4
. 05 6 T
1S U=1lo 0 2 =1
- - - - - . 0 0 0 _5
% upper triangular : if: 1> j = aij =0,

1 0 0 0
L= 10 0 0
% lower triangular : if: i<j = aij=0. S
< An upper and lower triangular matrix is R

L=
a diagonal matrix. C e a
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2 OPERATIONS ON MATRICES

2.1. Sum and products

Addition of matrices:

If A and B are two matrices with the same size m x n their sum
C = A+ B is a matrix of the same size m x n defined by

Cij = aij + bij

Product of matrices with scalars:

If A =(aij) is a matrix and « is a scalar, then their product is defined by

a A = (ax dij).

Properties:
Let A, B and C be matrices of same dimensions. Let a and B be two
scalars.

1. A+ B =B + A: the sum is commutative,

2. A+ B+ C) = (A+ B) + C: the sum is associative,

3. A+ 0 = A: the null matrix is the neutral element of the addition,
4. (@ + B)A = aA+ BA : matrices distribute upon scalars,

5. a(A+ B) = aA+ aB : scalars distribute upon matrices.

Examples.

3 4 2 6 1 9 (346 441 249} (9 5 11
l)FOI‘A‘:(l 3 5)and3:(2 0 S)WehaVe A\““B‘(HQ 340 5+3)‘(% 3 )

2) For 4=(; 7)and B:(g _51) we have A+B:(§ 2)

3) If A:G _72) and B“:(_,f) then A+ B’ doesn’t exist.

The sum of two matrices of different orders is not defined.

oy

4) For A:(; 701)' B:(g 5)' C:(g i)then

146 —1-5\ (7 -6 (641 —5-1| _ (7T -6 (640 —5+2| (6 -3
A+B_(:%+2 o+1)‘(: ) E+A‘(2+3 1+0)‘(5 1)' B+C_(2+2 1+4)‘(4 5)_
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We can verify that (A+B)+C—(; _~4) and A+(B+C)=(; :4).

J

3 4 2
5) If 4= (1 3 )) and @ = 3 then their productis @ A= (1;2 3fy 52 |-

Exercise.

3 9 1 2
LetA((lJ 4)andmg_ (1J 1 be matrices.

1. Find matrix C such that A - 2B - C = O.
2. Find matrix D such that A+ B+ C-4D =0

Correction
1.A-2B-C=0isequivalent to C=A - 2B, i.e

€11 Ci2 -3 2 1 2 —3-2x1 2—-2x2 -5 =2
€21 €| =0 4 )—-2|0 1]=[0-2x0 4—-2x1|=|0 2
C31 C32 1 —1 1 1 1—-2x1 —1-2x1 -1 -3

2.A+ B+ C-4D = O is equivalent to D = 4(A + B + () , replacing C = A - 2B we
getD="% A+ 2B

dii dia 1 -3 2 1 1 2 sx(=3)—3x1 ?fo%x2 —Tla 1f2
dQl CI’QQ :i 0 4 1 0 1 %XO %XO §X4—IX1 = 0 T4
dgl dgg 1 —1 1 1 % x1— i x 1 % X (*1 — % x 1 1/4 73/[4
Product of matrices:
If A = (ay) is an m x n matrix e (P IR
and B = (byj) an n x p matrix, R oo R
their product is defined by A : . :
AxB= Z f’ikbkj / ya .“
k=1 1<i<m’ /
1<j< / / / L
c :i E a :; L any CIL{ €1 C1p
That, is A.B=C with I ' : S S B
o (e Can on
L OEIORIC)
C!-j — E aikbkj - Lo
I-—1 Ty B [ s B [ Cm1 . Cmk . Cmp
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Properties:
Let A, B and C be matrices of same dimensions. Let a« and B be scalars.

1. A(BC) = (AB)C : the product is associative,

2. AB+C)=AB+AC and (B+ C)A =BA+ CA:
the product distribute upon addition,

3. AXx 0=0 and 0 xA=0:

J

3. Let A be a m x n matrix, then (lis neutral for product of matrix)
ImxA=A and AxIn = A.
Examples.
12 3 2 1 2
7) Consider A—(z 3 4) of size2 x 3 and 2= (—11 1) 1 1)
of size 3 x 2. The product is possible, it is a matrix 1
of size 2 x 2. To calculates the first coefficient (1 2 3) (C“ Clz)
2 3 4 Ca1 Coo
Cii=1x1 +2x(-1)+ 3x1 =2
(sum of products of elements of the lign and column) 1 2
. —1 1
We continue for the coefficient ¢;, with (sum of 1
products of elements of the ligny and column) (1 2 3) ( 2 ¢ 2)
Ci,=1x2 + 2x1 + 3x1 = 7. 2 3 4) \ea

3 0 1 2 0

2)ForA=(,ll 1 Q)and B=(8 21 3)Wehave

Ix143x040x0  1x243x240x(=1) 1x04+3x3+0x(=2)\ (1 7 9
—Ix14+1x042x0 —1x2+41x242x(-1) -1x0+1x3+2x(-2)] {-1 -2 -1}

AxB=

3) An interesting case is the product of a row vector by a column vector:
bl
by

For u= (ﬂ1 a - an) and Y~ | : |, then the product is a number (scalar):
bn

u x V:ﬂlbl +ﬂ2b2 + e +{Inbn

It is the scalar product of the vectorsuand v .

107



Attention

7) The product of matrices is not commutative in general.

5 1\(2 0\ (14 3 o 2 0\(5 1) (10 2
3 o/\4 37\ 2 6 is different of 4 3/\s o) \a0 _2)-

2) AB=0+A=00r B=0

0 —1 2 -3 00
A:(o 5) B:(o 0) and AB:(O 0)'

3) Consequently AB=AC =% A=0o0r B=C.

0 —1 4 —1 2 5 [ 4
A:(o 3) B:(s 4) Cz(s 4)and AB_AC_(IS 12)'

Exercise.

Compute the following operations

2
2 1 -10 2

315 _ _

270)x3 0 1 8 2)(305)X o3y (4] x(=3 0 3)
0 -5 3 -3 3

) 4

D

Correction

2x3

7 ~ 2 1 -1 0
1) 3 1 5 .

5 7 ol % 3 0 1 8

0 -5 3 4

(9

3x4

2x4

C(3x241x3+5%x0 3x1+1x0+5x(=5) 3x(—1)+1x1+5x3 3x0+1x8+5x4
C12x247x340x0 2x14+T7Tx0+4+0x(=5) 2x(-1)+7x1+0x3 2x0+7x8+0x4

9 —22 13 28
25 2 5 56

3x1
——

1x3 1x1
e N 2
2) (=3 0 5)x[—4]=(-3x2+0x(—4)+5x(=3)) =21
-3
3x1 3x3
T 1x3 : - ,
2\ —_- 2x(-3) 2x0 2x5 -6 0 10
3) | -4 x(-3 0 5)={—-4x(=3) —4x0 —4x5|={12 0 —20
‘ —3x(=3) —3x0 —3x5 9 0 —15

Powers of a matrix:
In the set of square matrices Mn(K), the multiplication of the matrices is
an internal operation i.e. :

if A, B are in Mn(K) then the product AxB is in Mn(K).
We can then repeat the multiplication: A2 = Ax A, A3 = Ax Ax A.
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Thus, we can define the successive powers

A’ =1, and APl = AP x A for all p=2.
That is : M” =Ax Ax -+ Xx A] for p factors.
Example
We seek to calculate A for a= ((1) —01 (1)) where p is an integer number.
0O 0 2

We calculate A2, A3 and A4 and we obtain:

10 3 1 0 7 1 0 15
A2=|0 1 0 AB=A2xA=|0 -1 0 At=A"xA=(0 1 0 |.
0 0 4 0 0 8 0 0 16

The observation of these first powers makes it possible to think that the

formula is:
1 0 2r-1
A=0 (-1 o0
0 0 2F

Let us prove this result by induction: It is true for p = 0 (AP= In).

We assume that it is true for an integer p and we will prove it for
p+1. We have, by the definition

1 0 2P—1 1 0 1 1 0 optl_q
ATl=AP xA=]|0 (-1 0O x{0 =1 ofl=]0 (-1)" 0
0 0 2p 0 0 2 0 0 2p+1

1 0 2P —1

Which affirm that for all p>2 A=10 (-1)» 0
0 0 2P

2.2. Particular operations on matrices
Here are some interesting and useful operations on matrices.

v/ Matrix transpose A= ( ; Bl ;)
If A = (Qij) is an m x n matrix, we define 1 3
the transpose matrix of A, denoted A’, Al = ! 2)
by )
1 2 3 1 4
- @) HEE
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Properties

(AT = A,
(@A)" = aA” if « €K and A € Mm,n(K),
(A+B)'=A"+B",

ifAe Mm,n(K),

if A, B € Mm,n(K),

v' Symmetric matrix
The matrix A is said to be symmetric if

AT=A

i.e. if dij = aji for alli #j.

v Anti-symmetric matrix

The matrix A is said to be antisymmetric if
AT=-A

i.e.if dij = - aji for alli # j.

v’ Trace of a matrix

the trace of a square matrix A of order n,
is the sum of the elements of the diagonal
main.

n

tr(A) = ZGU =daq + Ay + -+ ay,.

i=1

Properties

Let A and B be squares matrices (n x n), then
1. tr(A+ B) = trA + tr B,

2. tr(axA) = a trA for all scalars «a in K,
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An important case:

1
-2 5)I'=|-2
5

Symmetric matrix:

Symmetric matrix:

1 5 -9
B=|-5 4 0
9 0 7

— (21
A=(5s
trA=2+5=7

11 2

Bz(s 2 8 )
11 0 —10

uB=14+2—-10=-7




Exercices.

Find x value such that the trace of matrix A is minimal.

Find x value such that the trace of matrix A is maximal.
2x3 4 1
A= 0 3x? 2
5 6 —12x

Let’s consider the function y : x — y(x) = tr(4) ; we have
y(x) = 2x3 + 3x2 - 12x.

Correction

y'(x) = 6(x2 + x - 2), y>0for x <-2Zand x> 1, y<O for-2 <x<1.
Then tr(A) is maximal for x = -2 and tr(A) is minimal for x = 1.
v"Invertible matrix

A square matrix A € Mn(K) is said to be invertible (or regular)
if there exists a matrix B € Mn(K) such that

AxB=BxA =In.

In this case, we note it B = A™ , it is unique and it is called inverse
matrix of A.

v"singular matrix

A non-invertible matrix is said to be singular.

Properties

Let A and B be two invertible matrices, then

o A is also invertible and (A H)1=A,

o AxB is also invertible and (AxB)'=B'xA™,

o AT is also invertible and (A)'=(AH"
Examples:

7) Let A= (é %) , we are looking for its inverse B = (‘; é’)

If it exists, we must have
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1 2 b 10 2c b+2d 10
AB =1, then (0 3)(: d)=(0 1), then (a;c ;rd )_(0 1) which deal to

a+2c=1
b+2d=0
3c=0
3d=1

, ¢c=0,d= L1 The inverse is

Solutions of this systemis: a=1,b=— 3

_ 1 -
3

2) The identity In is invertible, and its inverse is itself by the equality:

Wik Wb

In x In = In.
3)If C is invertible, one can simplify the equality AC = BC. Indeed:
multiplying AC = BC on the right by ¢! yields to (AC)c!=(BC)CL.
By associativity we’ll get A(cc™!)=B(CcC™).
This deals to Al = BI which gives A= B,

Example (singular matrices) ;

a

b
1) Consider A= (E 8). If it exists, it invers B :( d) must verifies

C

sa— (@ B)(3 0)_(3a+5b 0)
~\c dJ\5 0) \3c+5d 0
The product never can be equal to identity. So A is a singular matrix.

2) The zero matrix On of size n x n is not invertible because for any matrix
B we have B x On = On, which can never be the identity matrix.

3 INVERSE OF A MATRIX CALCULUS

We are going to see a method to calculate the inverse of any matrix in an
efficient way.

3.1. Square 2x2 matrices

We start with a simple formula for the elementary case of 2x2 matrices.
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Proposition
b
Consider the 2x2 matrix A= (f d)' If ad—0bc+# 0, then is also

ad—bc | _ c a |-
Examples:

We reconsider the matrix of example 7) above: A = (é %), we apply
directly the given formula

FETR. d —b\ 1 (3 =2\ _ (1 =2/3
“ad —be \—¢ a) 3\0 1) \0 1/3)

3.2. Gaussian method for inverting matrices

invertible and

We will take a look at an efficient approach for finding the inverse of any
matrix. It is a linear system reformulation of the Gaussian pivot method.

Method

To invert a matrix A, first we write the augmented matrix (A | I) then
we perform elementary operations on the rows of (A | I) until the
table (I | B) is obtained. We conclude that B = A™.

v' Basic row operations: (to do in both sides of (A | 1))

7. Li€ ALi (A = 0): multiply a line by a non-zero scalar.
2. Li€Li+ALj (j=1i): add to the line Li a multiple of another line L;.

3. Li € Lj:we can exchange two lines

v' Equivalent matrices

Two matrices are said to be equivalent if one resuts from the other
by elementary operations.

Examples:
1 2 1

Let be the matrix A=| 4 0 -1 | We consider the augmented matrix
-1 2 2
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1
-1
2

1
Aln=| 4
-1

N O N
o O
o = O
= o O
b=
[ %]

L3
We apply elementary operations to make zeros below the diagonal.
We will obtain a lower triangular matrix.

To make 0 appear on the first column, apply L2 € L2 - 4L.1 for the
second line and L3 €< L3 + L1 for the third line:

1 2 1|1 00 1 2 1,1 00
0 —8 —5|—4 1 0 | LeL,4,; and 0 8 5|—-4 10 _
-1 2 2|0 01 0 4 3|1 0 1) LyeLy+L,

Multiply the line L2 to get 1 in the diagonal, apply L2 € L2 - 4L1 :

12 1|1 0 0
01 3|35 —5 0 | Ly—1L,
04 3[1 0 1

We repeat the procedure for the second column:

1 2 1] 1 0O O 1 2 1] 1 0 O
51 1 1
0151z —50 , 01 2|3 —5 0
00 3 |-1 3 1) Ll 00 1|—-2 1 2 ) L2t
We’ll do the same to make appear zeros above the diagonal:
We will obtain a upper triangular matrix.
1 1 1
121 1 03 05 5 100 7 o7 7| bt
0 103 =3 =7 | Lelrils 01 0|7 & ¢
0 0 1|-2 1 2 001|-2 1 2

-2 2 2
Hence the inverse matrix of Ais 41 = 1( 7 3 _5).
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4 DETERMINANTS

4.1. Definition and practical computation
Definitions

A being a square matrix of order n. For all (1,j), 1 <1, j < n, we denote

by Aij the square matrix of order n — 1 obtained by deleting the i-th
row and the j-th column of A.

i --- Qi1 @ Gpje1 - Qi a1 ap j—1 apj+1 e Mg
Ai-1,1 -+ Gi—1,j-1 Gi—1,5 Li—1,j+1 -+ Ai-1n
_ | %11 -+ Qi1 Qi1+ - Qi-1n
A= QG .- Qi - Aij+1 -+ Qip ij—

¢ ! QG110 - Qigljol Gisljel -+- Qiddn

qit1,1 -+ Dit1,j-1 it1,j Dit1,j+1 -+ Ditln :

: : : : an1 a,!j,l (Inj+1 ayp }
Apqp .- ﬂn]j71 an,j ﬂn’j+1 R 7 . ’ > ? ’

The number (—1)"*/ detA;; is called cofactor associated to the element aij.

The matrix whose elements are cofactors (—1)"/ det4;; is called the
co-matrix and is denoted Com(A).

Calculus determinants methods

The determinant of A, denoted det(A) or |Al, is defined by induction:

o ifn=1: det(A) = a11

e if n > 2: distributing co-matrices upon their corresponding

elements aijwe’ll get :

n

1) det(A) = Z(—l)iﬂf’a‘j det(A) distributing along the line i;
j=1

= (—1)i+1ai,1 detAijl + (—1)i+2f1[',2 detAi’z +---+ (—1)i+nﬂi,n dEtAijn.

or
n

2) det(A) = ) (—1)"7ay;det(A) distributing along the column j.
i=1
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Applications: (n=2 and n=3)

aqq a2
1) casen=2.: Let the matrix A = , then
21 022

det(A11) = a22, det(A12)=a21l, det(A21)=al2, det(A22)=all.
We can calculate det(A) by one of the following formulas (as examples):

v development along linei=1:

anndet(Arr) — aradet(Ai2) = arnaz — azan,
v development along column j =1 :

arndet(Ar1) — andet(Asr) = anag — asias,

which give the same result.

11 di2
det(A) = det = 011022 — A1209]
a1 ao9 .

() |
|

L4

Example: det ( ) = 5 bt 3 — 7 X 1 — _I_tr.'l — 28 = —]_3

[SE=N
u-\-:'

L4

a1 12 a3
2) casen = 3.: Let the matrix A = | @21 022 023 |, then choosing to
31 d3z2 d33

develop along the first line (i=1), i.e. the elements 11 012 013, the

determinants of the corresponding co-matrices are

Gaz U323 21 023
det(Aq1) = det = U99033 — 093032 . det(Ag2) = det = (91033 — O23031
032 U33 ’ 031 033 ’

21 oo
det(A;3) = det = 021032 — U2203].
31 d32
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Then det(A) =di det(;%ll) — a2 det(ﬁ:&lg) + dj3 det(ﬁﬂlg) .

It’s much easier to remember

+ o+ o+ ® & &
i1 di2 013 ai1 Q12 di3  ann ap
det(A) =det | a21 a2 ass
31 O3z d33 a1 @2 @23 @z ax

= (0110220'33 T 012023033 + 0130210'32) ds dss db o ok

- (0‘13022031 T (11023032 + 0120210’33)

(Sarrus rule’s)

+ 4+ 0+ a @
1 0 1 0@ 1 o
Examplee A= [0 2 0 0 2 0 O o
0 3 5 0 3 @ 0 3

det(A) =(1x2x54+0x0x04+1x0x3)—(1x2x0+1x0x34+0x0x5)=10.

Remark:
For n > 4, we have to choose a line or a column which contain many zeros

and distribute along this line [0 x det(Aij) =0].

Application:
1 0 0 1
7) Let be the matrix A = ? g (l] S.We distribute along the line 1.
1 2 3 0
0O 1 0 2 0 1
det(A) = det(Ay;)—det(Ay)=det |2 0 4|—det|1 2 0
2 3 0 1 2 3

For the first matrix we distribute along the column 2, for the second
matrix we will use the rule of Sarrus.

2 4

= —det (2 0

) —(12404+2—-2-0-0) = —(—8)—12 = —4.
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P = = W

1

N = W

+1
3

1
0
_1} We distribute along the column 2.
3

1
0
3

3 1

] —1D -~ (_4’

3 1
2 3

+1

41_043
1 3 1 2

= +2(+4x5-0+1x(—4))—-3(—4x7+1x11-0) = 83

4 0
_ |4 2
2) Let be the matrix 4=|, 5
10
4 3 1 4
detA = +2[0 1 —1|-3/4
1 2 3 1
= 2 +alt Y0P
a 2 3 2
Exercise.

Calculate the determinant of the following matrices

Correction
1. det(A)=1x5—-3x (—7) = 26.

2. Let’s develop along the last line :

det(B) = (—1)*+2 x (=2) x det (2)

3
7

)—2x(2x7—3x5)——2.

-1 3 —
0 4 -5
4 3 1
-3 1 -1

3. We will use elementary transforms to make appear zeros before developing along columns

(this will simplify calculus)

2 -1
2 0
C=122 4
0 -3
then
2
et(C) = det | 2
det(C) = det _9
0
Again
1 1
3 6
-3 1
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3 1 = 0 3
1 -1 0o -3

-1 3 —
0 4 =5
-3 1 -1
—1\ Loely-3L 1 1
: .!_':,(—Li—i-\%l'_l 0 3
—1 - 0 4

— Oy = W
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then
1 1 -1 BT
2xdet| 3 6 —3|=2x [(—=1)M"! x1xdet (4 4) )
-3 1 -1
=2x(3x(—4)—-0x4)=—-24.
Exercise.

Calculate the determinant of the following matrices

00 1 0 02 3 4
2 3 7 4 1 7 12 -5
3 1 12 0 0 3 1 0
4 0 =5 0 0 4 0 0
Correction
00 0 2 3 4 ;
1. det 2 i 172 é =det! 3 1 0] =4det (1 D)_16
4 0 =5 0 00
0o 2 3 4
2 3 4 L
2. det ( g 112 0‘)] clet(3 1 0) = —4det (f é) = 16.
0 4 0 0 00

4.2. Properties related to determinants

v" Properties f determinant

Let A and B be matrices, then

@ det(AT) = det(A),

@ det(Al) = 1/det(A),

o det(A x B) = det(A) x det(B),

o if B is equivalent to A (obtained via elementary transforms) then
det(A) = det(B).

v' Reversibility

A matrix A is invertible if and only if det(A) = O.
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v" Determinants of trianqular

matriX Iy g evr eee ae ayy
- ) 0 ay ... ... ... ay,
The determinant of an . :
upper (or lower) detd=| . . | =anay g

triangular matrix is .
equal to the product of 0
the diagonal terms.

v Determinants of diagonal matrix

Identic result: The determinant of a diagonal matrix is equal to the
product of the diagonal terms.

Exercise.

Find t values such that the following matrices will be invertible

[t+3 t2-9
A_(t2+9 t—3)

Correction
Recall that matrix A is invertible if and only if det(A)=0.

t+3 t°-9

det(A) = det (rg 19 t-3

) = (t43)x (t=3) = (P =9) x (£ +9) = —(t=3)(t+3)(* +8).
So, the matrix is invertible far all t € R\ { —3,3 }.

4.3. Rank of a matrix

Definition and results

v' Definition
The rank of an mxn matrix A, denoted rg(A), is equal to the largest

integer S such that one can extract from A an invertible square

matrix of order S (i.e. a nonzero determinant square matrix of order S).
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v" Results
Always 0 £ rg(A) < min(m, n)

rg(A) = 0 if and only if all the elements of A are zero.

Examples:
' 1 3 2
7) Let be the matrix A= 1 3 1]/-

e Dimension of Ais 2 x 3 then s < min{2, 3}, sos=0, 1 or 2;
e at least one element of A is different from zero, so s = 0;

e since the determinant of the sub-matrix composed of the first and
the third column is non-zero, then s = 2.

1 0 1
2) Let be the matrix A = ( 0 5 l) .
-1 0 -1

e Order of Ais 3 x 3 thens < 3;

e at least one element of A is different from zero, so s = 0;

e det(A)=0 then s = 3;

e the determinant of the sub-matrix ( é L: ) is non-zero, then s = 2.

Exercise.

Calculate the ranks of the following matrices

1 2 8
B=12 1 4
0 3 12
Correction

1.1 < rg(B) < 3.det(B) = 0 then1 < rg(B) < 2,

2

Il
T~
= 00 N
[

—_
(=T
~— —

1 2 i ‘
det (2 l) = —3#0 then rg(B) = 2.
2.1 < rg(C) < 3.det(C) = 0 then 1 < rg(C) < 2.

2 1 )
det (J_ 2) =3 # U' then ]_‘g(@) = 2.
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4.4, Inverse of a matrix

v Theorem

Let A be an invertible matrix, and C its comatrix. Then we have

-1 1 T
A= detA ¢
Examples:
110
Let be the matrix 4= (1] (lJ 1 . We have det(A)=2, then A is invertible.
Calculating the cofactors of all elements of matrix A we’ll get the co-matrix
1 1 -1
C=-1 1 1
1 -1
We deduce
1 -1 1
g pycs Y B
detA 2
—1 1
Exercise.

Calculate, using two methods, the inverse matrix of

Correction

1. We calculate the comatrix Com(A) (elements are cofactors)

(—1)1+1 jl i (—1)1+2 —ll i (—1)+3 —ll ll‘
a1 =1 ia|l =1 sl 1 220
Com(A)= | (—1) 11 (—1)**= 11 (—1)%t: 1 —1 =10 2 2/|;
2 0 2
s | -1 sz | b1 s b1
(-1) (-1) (-1
1 1 —1 1 -1 1
2 0 2
Transpose comatrix : Com(A)T =12 2 0
0o 2 2
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1 2 0 2 /2 0
Dividing by det(A) we get : Al = 1 2 2 0l =|Y2 1)
0 2 2 0 12
2. We will use augmented matrix and elementariy transforms
1 1 —-1(1 0 O ly—lotl, 1 1 -1
-1 1 1]0 1 o |=2=50To] 2 o0
1 -1 1|0 0 1 0| -2 2

e 1 1 =11 0 0 ilhilfﬁ
222500 [1] 0|k oo | 2

1 0 —-1|Y2 =12 0O 1 0
SBB Lo 1 0 |2 2 0 | 2ERER
0 0 0 1 1p 0 0
2. 0 12
We deduce : A= 12 12 0
0 12 1
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Chap 6 : System oi linear equations

1 SYSTEM OF LINEAR EQUATIONS
Definition:
n, p > 1 being integers, a N X p linear system is a set of n linear
equations with p unknowns

appxyy + ...+ QipXp = bl-
(5) :

UmX1 + ... + dppxp = by

v’ The coefficients aij and the second members bi are given elements of
K =R or K = C. The unknowns X1, X2, ..., Xp are to be found in K.

v’ The homogeneous system associated with (S) is the system obtained
by replacing bi=0.

v' A solution of (S) is a p-tuple (X1, X2, ..., Xp) which satisfies
simultaneously the n equations of (S).

v Solving (S) is to search for all solutions.

v' A system is impossible, or incompatible, if it does not admit a
solution.

v' Two systems are equivalent if they have the same solutions.

Matrix writing:
If we denote

X1 bl ap; ... dip

Xp b, Up1 ... dpp

Then, the system (S) is equivalent to the matrix writing AX = b.
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apnxy + ... T t1pXp = by, aip ... dip X1 bl

(5) . equivalent | —
UpiXy + oo Xy = by. Un1 ... dnp Xp b,
Exercise.
1 1 -1
Reconsider the matrix A = | =1 1 1 | of the precedent exercise.
1 -1 1

1) Write the system equivalent to the matrix equation AX=B. Precise the
nature of X and B.
2) Solve the equation AX=B.

Correction
1) The matrix equation AX=B is equivalent to the system

lay+1x9 — 1y = by
(8) —1I]+1.’E2+1$3:b2
1217] —1I2+1ZC3:E33

T by
where X = | 25 |and B = | b, | are vectors matrices.
Ty bs

2) To solve the equation AX=B we need matrix A to be invertible. It is and we have

L [2 0 2 Y2 0 12
ATt =- 122 0= 'k 0
“\0 2 2 0 12 1/p

Consequently, we have X=A"'B and the inverse system of (S) is

1/2b] +0b2+ 1/2()3 = I
(S7H $ 1/2by +1/2bs + 0b3 = 5
O:L‘l + 1/2b2+ 1/2b3 = I3
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2 CRAMER’S METHOD

Consider a system of N equations and N unknowns

a11x1+a12x2+---+a1nxn = bl
a21x1+a22x2+--'+a2nxn = bz
an1x1+an2x2+"-+amxn = bn

This system can be written in matrix form AX = B where

aj;; a2 -t @ X1 b,
az; QA - dy, Xy b,
A= . . . EM,(K), X=| . B=| .
ap1 dpz - Qpp Xn and b”

Cramer’s rule:

Define the matrix A; € M,(K) obtained by replacing the j-th column of
A by the second member B

ayp .. ﬂl,j—l bl GUH vee Qqp
as; ... "12,)'—1 bz 02,j+1 oo Qop

app --- an,j—l b” an,j+1 N ¢

The Cramer’s rule says that: if det(A)=0 (thatis A is invertible), then the
unique solution (X1, Xgy -3 Xn) of the system (itis also to the matrix equation) is
given by

detA, detA, detA,
= Xy = e X, = .
detA detA detA

X1

Exercise.
Apply for the system of the exercise below.

Correction

The system
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lay+1x — 1y = by

(5)
1217] —1I2+1$3:b3

is equivalent to the matrix equation

1 1 -1 T by
-1 1 1 o | = [0 ).
1 -1 1 Ty by

1o+ 1xo+ 1oy = by

We have det(A)=1/4 (not zero) then the system (the matrix equation) admits a unique

solution (1, T, x3) given by

by 1 —1
by 1 1 1 1 1 -1 1 -1
b —b b:
by —1 1 - 1’ 2o 1| 1‘ 2by + 0by + 2 by
Tr, = e =
N T T 4 4
-1 1 1
1 -1 1
1 bl —1
S I A e N s N
. 1oy 1] T 1] TR 1 P 1| 2b 4 2by 4 0by
o = 1 1 1 = 4 = 4
-1 1 1
1 -1 1
1 1 b
-1 1 b -1 1 1 1 1 1
) 1 —1 by _bl 1 1‘b21 | |y 1‘_Obl+252+253
S T 1 N 1 '
-1 1 1
S
Comparing with the system (S'l) we notice the same results.
1/2by +0be +1/2b3 = x4
(S7H $ 1/2by +1/2bs + 0b3 = 5
011+1/252+1/2b3:$3
Exercise.
x1 + 23(3 6
Resolve the system —3x; + 4x5 + 6x3 = 30
—x; — 2x, + 3x3 = 8.
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Correction

The is equivalent to the matrix equation AX=B where

1 0 2 6
A=| -3 4 6 B=1] 30
-1 -2 3 and 8

Developing along the first line we get

4 6 -3 0 -3 4
dct(A)—l‘_Q 3‘—0_1 3‘+2_1 _2‘_24+20_44
6 0 2
30 4 6 64 6_0306+2304
8§ —2 3 -2 3 8 3 8 —2|  6(24)+2(92) —40
€Tr = = = —
! 44 44 44 44
1 6 2
-3 30 6 30 6 -3 6 —3 30
-1 8 3 _1‘8 3’_6‘—1 3‘*2‘—1 8‘_72
LT T 44 Y
1 0 6
-3 4 30 14 30—07330+6734
-1 -2 8 -2 8 -1 8 ~1 =2/ 152
= 44 - 44 Yy
3 GAUSSIAN PIVOT METHOD
Stepped system:
A system (S) is stepped, or Staggered, if the number of first successive
zero coefficients of each equation is strictly increasing.
The corresponding matrix is triangular.
Example:
The following system is stepped.
( 5X1 —X2 —X3 +2X4 +Xxg = bl
3x3 —x4 +2x5 = bo
4 —X5 +X6 = bq
5X5 = b4
0 = b;s
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Method:

Gaussian pivot method consists to transform a system to a stepped
one (triangular matrix), we will use elementary operations on lines of this
system (or on column of the augmented matrix).

Solutions will be deduced successively because of the
triangularization.

Exercise.

X1 +2x2+3x3+4x,=1,
2x14+3x2+4x3+x4 = 2,
Resolve the system 3x1+4x2+x3 +2x4= 3,
dx14+x2 +2x3+3x4= 4.

Correction

1. Resolution by the Gaussian pivot method:

we will use elementary transforms to reduce this system to a stepped one (triangular

matrix)
X1+2X2+3X3+4X4= 1 LaeLa—2L4 X1+2X2 +3Xg +4X4= 1
P [3+1l3—-3L1
2X]_+3XQ+4X3 +X4= 2 Lge—Llg—414 —Xa —2)(3 —7X4: 0
—_
3x;+4xs +x3+2x4=3 Etape 1 —2x3 —8x3—10x4=10
dx1 +x90+2x3+3x4= 4 —Tx;—10x3—13x4=0
X1+2X2+3X3 +4X4= 1 X1‘|—2X2‘|—3X3+4X4: 1
Lg(—!‘.g—?f.g ‘
L4<—L4—?L2 *XQ*QX:—; *7)(4: 0 f_44—1r__1-|—1r_3 _X2_2X3_7X_l: 0
—_ —_ 5
Etape 2 *‘1)(3 +4X~1= 0 Etape 3 _4X3+4X4: 0
Ax3+36x4= 0 40X4: 0

We deduce successively

.'1'34:0

—dr34+4x0=0 = 23=0

— 29— 2xX0—-7Tx0=0 = 2,=0
T1+2x0-2x0-Tx0=1 = 2;=1
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2. Resolution by the Gaussian pivol method in matrix writing:

1 2 3 4|1 \ipetp—21,y 1 2 3 4 1
apj=| 23 4 1|2 BCETEE [ oo -1 =2 -7 o0
3 4 1 213 Etape 1 0 -2 =8 —=101]0
4 1 2 3|4 o -7 =10 =130
T 1 2 3 4 1 1 2 3 4 1
Gelitls | 0 =1 =2 =7]0 | ewsts [ 0 =1 =2 =710
E‘[ape 2 0 0 —4 4 0 Etape 3 0 0 —4 4 0
0 0 4 36 |0 0 0 0 40 |0
We deduce successively
VDry=0 = x4=0
—Ar34+4x0=0 = 23=0
—29—2%X0—-Tx0=0 — 22=0
1 +2x0-2x0-Tx0=1 = ;=1
Exercise.
—2u—4v+3w=-1
Solve the system 2% —w—1
u +v—3w=—6
Correction
—2u—4v+3w=—1 T —2u—4v+3w=-—1 T —2u—4v+3w=—1
v —w=1 _'*'_‘:ji_l_@, v —w=1 _.r‘"_:ji__ﬂi v —w=1
u +v—3w=—56 —v—3w=—132 —2w=—~6
We deduce successively w=3v=2etu=1.
Exercise.
6 1 1 X1 12
Solve the system 2 4 0 x2| =10
1 2 6 X3 6
Correction
6 1 1|12\ L=l—th /6 1 1 |12 e 6 1 1 |12
lyela—il, Laels—qr L
[Alb]=] 2 4 0|0 | —= B dilg | ——10 & 1]
1 2 66 0 i 354 0 0 6|6
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6x1 + x2 + x3 = 12,

We deduce %xz — %X3 =—4 then successively x3 =1, xo=—1, x; =2.
6X3 =6
Exercise.
x+y—z=1,
Consider the linear system (S) 2x + 3y + Pz =3,

X+ By +3z=-3.

Discuss according to the real parameter 3, the solutions of the system (S).
Correction

1 L\ b2t [0 1 =1 L ] -1 1
2 3 | —%|0 1 p+2|1 |=—"-—3|01 pB+2 | 1
1 -3 0 B—1 4 |4 00 (6-B-PB*)|-(3+B)

Notice that 6 — p — 2 = (2 — B)(3 + B) we conclude

-1
B
3

W W =

1. if B = —3 then the last equation is 0z = 0 : hens (S) has an infinity of solutions,
2. if 3 = 2 then the last equation is 0z = —5 (impossible): hens (S) has no solution,

3.if B#2 and B #—3 then (S) has a unique solution

—1
2-P)B+B8)z=-B+8) = z=5—
B8+ 2 ﬁﬁ+2
y+(B+2)z=y- 53 y=1+5—
B+2 -1 8+3

]

2—-3 2-7

w

Exercise.

I+a)x+y+z=0,
Consider the linear system (Se) Ax+(Q+a)y+z=0,

x+y+(l+a)z=0,

Discuss according to the real parameter a, the solutions of the system (S.).
Correction

Let us check the determinant of (S.)
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l+a 1 1
1 1+a 1 |=04+a)P+14+1-(14a)—(14+a)—(1+a)=(1+a)®*=3(1+a)+2
1 1 l+a

= a*(3+ a).

(Sa) is a Cramer system if and only a € R\ { =3, 0 } . In this case (Sa) will have a

unique solution.

Case a = —3 : the system yields to
—2x+y+z=0,
(5-3) x—2y+z=0,
x+y—2z=0,

Using the Gaussian pivot method, we’ll get

-2x y +z=0 iz«—i#il% —2x y +z=0 - —2x —y +z=0
X—2y +z=0 aeLls+Ly/ *%9‘#%2:0 selz+la *%JJr%Z:O
x y—2z=0 Sy—5z=0 0z=0

The last equation is true for any value of z and solutions set is
S={(k,kk)|keER}.

Case a = 0 : the system yields to

x+y+z=0,
(50) X+§]+Z:0,
x+y+z=0,

Which is equivalentto x + y +7 =10, 80 z=x; €R y =k ERet x = —i; —ky, and

solutions set is
S = { (=K1 — Ka, K2, K1) } (K1, k) € R? ]

Casea ER\ {—3, 0} since it is a linear system and second member is zero then the
solutions set is

< ={(0,0,0) }.
Exercise.

x+ay+(a—1)z=0,
Consider the linear system (S,) {3x+2y + az =3,
(a—x+ay+(a+1)z=a,

Discuss according to the real parameter a, the solutions of the system (S.).
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Correction

Let us check the determinant of (S.)

1 a a—1

3 2 a |=2a+1)+a*(a—-1)+3a(a—1)—2(a—1)*—a*—3a(a+1) = a*(a — 4).
a—1 a a+1

(Sa) is a Cramer system if and only a € R\ {0, 4} . In this case (Sa) will have a unique
solution.

Case a = 0 : the system yields to

x—z=0, x—2z=10,
(S0) 13x+2y =3, which is equivalent to the system 3x+ 2y =3,
—x+z=0,

Two equations with 3 unknowns, then putting z as parameter we’ll get

3-3 . .
7=k €ER, y="5"etx=« and solutions set is

sz{ (K,3_23“,K) 'KER}.

Case a = 4 : the system yields to

x+4y +3z=0,
(S4) 3x +2y +4z =3,
3x +4y +5z =4,
Using the Gaussian pivot method, we’ll get

x+4y+3z=0, Leb-3h [ x +4y+3z=0, Y +4y+32z=0,
3x+2y+4z=3, =20 L _10y—5z=3, =—F"2 3 —10y—5z=3,
3x+4y+5z=4, —8y—4z=4, 0=16.

The last equation is impossible, then solutions set is S =40.

Casea € R\ {0, 4} system has a unique solutions. Let’s use the Gaussian pivot
method

+ay +(a —1)z=0,
(2—3a)y+(3 —2a)z=3,
| 2—a)ay+(3—a)az=a,

Ly—Ly— (32505 Lo {X( tay +(a—1)z=0,
—_—

Lye—l3—(a—1)L
3x +2y +az=3, LeclamlamDh,

X+G’g+(ﬁ' _ 1)2:0J loe—15-314 {X
| (¢ — )x+ay+(a + 1)z=a,

2 —30)y+(3 —2a)z=3,
('2(“*4)2_ 4a
3a—2 < 3a-2-
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. _ a—6 _ a*—2a0-14
We get successively z= U(G 4), Y= —glo=n X = “Gacq - hens

{ ( e _a(Cfcf—64)"cr<cf4—4>) }

4 GAUSS-JORDAN METHOD
Method:

In this variation, the main is make appear zeros both above and below
the pivot. In this case we end up with a diagonal system.

Solutions will be obtained directly because of the diagonalization

Exercise.
1 2 3 4 X1 1
2 3 4 1 x2| |2
Solve the equation 3 4 1 2 x3 | |3
4 1 2 3 X4 4
Correction
1 2 3 4|1
2 3 4 1|2
ABI=1 5 4 1 23
4 1 2 3|4
o . ) LyeLy42L 1 0 -1 -—-10]|1
popdin (L2 30 A L el
LyeLly—4Ly 0 -1 =2 =7 |0 |La=la-TLo 0 -1 -2 =710
Etape 1 (] -2 _8 _10 0 Etape 2 0 0 _4 "1 0
0 -7 —10 =130 0 0 4 36 0
iﬁ_il_igg 1 0 0 4 |1 iv—iwclitﬂéﬂ 1 0 0 0|1
A 0 -1 0 —7|0 | 22250 0o =1 0 0|0
Etape 3 0 0 —4 4 0 Etape 4 0 0 —4 0 0
0 O 0 40 | 0 0 O 0O 4010

We deduce successively

lzi=1 = 2,=1, —133=0 = 2,=0; —da3=0 = 23=0; 4024, =0 = x4, =0.
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