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Analysis II 
 

This course is intended for students in the first year of a Bachelor's 

degree in Engineering Sciences. Its objective is to provide basic mathematical 

tools for this sector. 

Elementary numerical functions as well as equations and inequalities 

with a real variable correspond to the secondary school and are assumed to 

be known. 

This manuscript is based on other books (partially, with or without 

modifications) like polycopids of Gloria Faccanoni, books of Herbert Amann 

and Joachim Escher in anlysis and others. 

In this document are included many corrected exercises to show the 

interest and omnipresence of Mathematics in the various sciences (physics, 

economics, etc.). 

  



 

 

 

Notations in Maths 

Usual sets in mathematics 

 

Intervals 

 Inequalities Corresponding set Graphic representation 

 

  

 : set of natural numbers 

 : set of natural numbers without zero 

 : set of relative numbers (positives, negatives or zero) 

 : set of relative numbers without zero (positives or negatives) 

 : set of rational numbers (  such that  and ) 

 : set of real numbers 

 : set of natural numbers without zero 

 : set of complex numbers 
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Chap 1 : Derivations and Approximations 

1 

1.1. Definitions 

Definition: (Derivation) 

• Let be  a non-empty open set. We say that a function  

is differentiable at a point  (or admits a derivative at ) if the 

rate-increase   admits a limit , noted 

, when : 

. 

•  is differentiable on I if it is differentiable at any point of . 

• The function  is called derived function of  and is 

denoted  or (in Leibniz notation) . 

 

Theorem: (differentiability implies continuity) 

Let  be a function defined on an open interval  and . 

If  is differentiable at  then it is continuous at . 

If  is differentiable on  then it is continuous on . 

 

Higher order derivatives 

• For  we define by induction the n-th derivative (or derivative 

of order n) of  by setting  then . 

• We say that  is of class  on , and we write , when  is n 

times differentiable on  and the derivative  is continuous on . 

• We say that  is of class  on , and we write , if  is of 

class  on , for every . 
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Exercise 

  

Correction 

We must look for real numbers  and  such that : 

 

Note that  is differentiable on ;   is differentiable on  

and  is differentiable on . 

It remains that  must be differentiable at points  and . 

1) For :  

Left derivative :   

Right derivative : 

    

So we must have  . 

2) For :  

Left derivative : 

    

Right derivative :   

Therefore, we must have  . 

We deduce 

 

We want to extend a parabolic segment by 

two lines, so that the function obtained is 

everywhere derivable (see the opposite drawing). 

Complete the formula below with equations 

of lines: 
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Exercise 

a. If a cube with sides of 2 cm increase by 1 cm/min, how does the volume increase? 

b. If the area of a sphere with a radius of 10 cm increases by 5 cm2/min, how does the radius increase? 

Correction 

a) The volume of the cube with side  is .  We have  (recall that ) hence 

 
    . 

b) The area of a sphere with a radius of 10 cm  is  . 

,  we deduce . 

Exercise 

A breach opened in the sides of a tanker. Suppose that the petrol extends around the breach 

according to a disc with a 2 m/s increasing radius. How fast does the surface of the oil slick-

disc increase when the radius is 60 m? 

Correction 

Let A be the area of the disc (in m2), r the radius of the disc (in m) and t the time (in seconds) elapsed since the accident. 

We want to calculate the rate of increase of the polluted area with respect to time,  (remember ). 

We will use the relationship:   ; the rate of increase of the radius is (given)  . 

Consider the formula :  Deriving with respect to r, we get:  . So that, for  we’ll get  

We deduce the variation of the speed of the surface of the oil spill when the radius of the slick is 60 m 

. 

1.2. Derivatives of usual functions 
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Examples 

1) .  

2) . 

3) . 

4) . 

1.3. Calculation rules for derivatives 

Derivable functions  

• Elementary functions such as polynomials, rational and irrational 

functions, exponential, logarithmic, trigonometric and hyperbolic 

functions are differentiable in their respective domains. 

 

Derivative of compound functions 

• If  and  are differentiable then the composite function 

 is differentiable on its domain and we have 

.
 

or (in Leibniz notation easier to remember) 

. 

Examples : on domain of U we have 

1) : .  

2) : . 

3) : . 

4) :  . 



 

5 

 

Examples (derivatives of common composite functions) 

  

Rules for calculating the derivative 

• The sum, product and quotient, of differentiable functions is a 

differentiable function over their domains of definition; and we have 

for  differentiable functions  and : 

 ,   , 

  ,   ( ). 

• If and  are n-times differentiable then the product  is  

n-times differentiable and we have (Leibniz formula ) 

, 

which can be written  

Examples 

For n = 1 we’ll get    , 

for n = 2, we’ll get    . 
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Examples 

Compute the n-th derivatives of  for all n > 0. 

Putting  we get  ,  , … 

Denote  then  ,   and for k > 3, . 

Applying Leibniz's formula, we’ll have 

 

Derivative of the reciprocal bijection 

• If a bijection  is differentiable then its inverse bijection

 (defined by ) is differentiable and we have  

. 

Notice.: 

It is easier to find the formula by differentiating with  : 

. 

2 

2.1. Linearization - Differentiability 

Definition: (differentiability)  

If a function defined on an open interval  admits in a 

neighborhood of a point 
 
an approximation of order 1 (or linear)  

i.e. that there exists a linear map  such as 

; 

then we say that is differentiable at the point .  

We also talk about linearization of the function . 

NB: remember that  with . 
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Theorem: (differentiability equivalent to differentiability) 

Let be  a function defined on an open interval  and . 

 is derivable at   i.e.  exists if and only if  

 is differentiable at   i.e. there is a linear map  such as 

. 

We actually have  . 

Indeed, the existence of the limit 

is equivalent to one of the following two writings 

  
or  . 

Theorem: (linearization or approximation of order 1) 

 

  

ATTENTION : Linearization depends on 

the point at which the function is 

linearized. 

For example, linearizing the function

 gives 

Close to   

  

Close to  

. 

If  is differentiable (differentiable) 

at  then we can approximate  

close to .by a linear expression 

(approximation of order 1) : 
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Example.1 

 Let , we have , linearization , 

we deduce 

  

Simple formula to remember. It makes possible to calculate approximations of 

roots and powers of numbers close to unity. For examples : 

 (with calculator : ) 

  

(with calculator : = ) 

Example.2 

Let , linearization , we deduce 

  

This is the linearization that is performed to solve the pendulum equation in 

physics. 

Line tangent to a point 

 

The straight line which passes through the 

distinct points  and  has as 

slope coefficient . 

Taking the limit, we find that the slope 

coefficient of the tangent is . 

An equation of the tangent at the point 

 is then: 

 . 
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Exercise 

 

Correction 

a) Target no 4 will be hit if it is on the tangent to the curve at (1; 3). 

The derivative Is    and  the tangent equation is   . 

For  we have .  Therefore target no. 4 will be affected. 

b) For target no. 2 to be hit, the tangent at ( , ?) of the aircraft trajectory must pass through target no. 2; therefore the couple 

 must verify the equation   i.e.  ,  

that is    or again   .  ,  .  

One can deduce the abscissa of the plane-position making possible to reach target no. 2. is . 

3 

3.1. Limited Taylor-Young expansion 

Definition: (Limited development) 

Let  and . We say that a function f admits a limited expansion 

(LE) to order n, at point a, if there are real numbers  such that 

for all x close enough to a we have: 

 

We recall that  with . 

The trajectory of an airplane in the opposite figure has the 

equation  . The aircraft fires a laser beam along 

the tangent to its trajectory towards targets placed on the x'Ox 

axis at abscissa 1, 2, 3 and 4. 

a) Will target no 4 be hit if the player shoots when the plane is 

at position (1, 3)? 

b) Determine the abscissa of the plane allowing to reach the 

target no 2. 
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✓ The term  is called the 

polynomial part of the LE. 

✓ The term  is the rest of the LE. 

✓ The limited development (LE) if it exists is unique . 

✓ If the function  is even (resp. odd) then the polynomial part of its LE 

at 0 contains only monomials of even (resp. odd) degrees. 

 

Theorem: (Taylor-Young formula) 

Let  be a function is of class  on  and . then for all  we 

have: 

 

The limited expansion of  in the right-hand side of equality is called 

Taylor-Young polynomials. 

For n=1 : we find the approximation of order 1 (linear): 

     . 

For n=2 : we find the approximation of order 2 (quadratic): 

    . 

Example 

Let’s look for various approximations of  around the point : 

  

✓ Approximation of order 1 (linear) : 

 

✓ Approximation of order 2 (quadratic) : 

  

✓ Approximation of order 3 : 
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Example 

For  and  we have: , , 

, , hence 

   

Note (important):  

The equation of the tangent at the point of abscissa then  is 

      .  

The quadratic approximation (of order 2) makes it possible to study the 

curvature of the curve of the function   

  .  

So, on an interval  we have: 

✓ If  then the curve of  is below the tangent: concave function. 

✓ If  then the curve of  is above the tangent: function convex. 

The point where there is a change in curvature is called the inflection point. 

To determine it analytically, it is necessary to solve the equation 

and then search among the solutions for those where  changes the sign. 

 

✓ Approximation linear (of order 1) :  

 

✓ Approximation quadratic (d’ordre 2) : 

   

✓ Approximation of order 3 : 
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Theorem: (Error of the approximation) 

If a function  is  differentiable and  is its Taylor polynomial of 

order n generated by  at , if  is bounded over I by a real 

M i.e. , then : 

. 

Example 

The linearization close to  of  gives . 

What is the precision of this approximation if  i.e. ? 

We have     we deduce 

. 

3.2. LE at the origin of usual functions  

We have to retain the following LE at 0 of usual functions: 
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Important remarks : 

➢ The LE of  is the even part of the DL of  (we retain the monomials of even degree). 

➢ The LE of  is the odd part of the DL of  ( we retain only the odd degrees). 

➢ The LE of  is the even part of the DL of  by alternating the sign and . 

➢ The LE  is the odd part of  by alternating the signs and . 

➢ For  there is no constant term, no factorial and the signs alternate. 

3.3. LE of functions at any point 

The function f admits a LE close to a point  if and only if the function 

 admits a LE close to . 

Therefore, we reduce the problem to 0 by the change of variables  

Examples. 

1. LE of  at . 

We pose  If x is close to 1 then t is close to 0.  

We will look for a LE of   near . 

 

So close to  we get 

   . 

2. LE of  close to . We pose , we have 

. 

 

3. LE of  at a=1 to order 3.  

We set , we have . 

. 
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We pose , we have ; we use  

    . 

 

3.4. Operations on limited expantion 

Let f and g be two functions which admit LEs at 0 to order n : 

,  

. 

Theorem: (Sum and product) 

• The TAYLOR polynomial of order n generated for the sum  is the 

polynomial sum ; 

  

• The TAYLOR polynomial of order n generated for the product  is 

the polynomial product  truncated to order n, i.e. that we 

keep only the monomials of degree ≤ n ; 

Example. 

We have the LE of order 2: 

   and  then: 
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Theorem: ( Composition ) 

• If  then the composite function  admits a LE of order n at 

a=0 whose polynomial part is the truncated polynomial at order n of 

the composite . 

Examples: 

1) Calculation of the LE of  at 0 to order 3. 

We put here  and . We have 

    and . 

The LEs:    and  , 

so  

and . 

Consequently 

 

2) Calculation of the LE of  near 0 to order 4. 

We know the LEs:  and  

We put  and . We have 

    and  . 

 

. 

We deduce 
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Theorem: (Division) 

• By carrying out the division according to the increasing powers of 

by  to the order n we will obtain the writing: 

       with . 

Then Q is the polynomial part of the LE at 0 to order n of  . 

Examples. 

Find the LE of  to order 2. 

  

  

  

  

 
 

  

  

We deduce   

3.5. Applications of LEs 

3.5.1. Limit calculations: 

1) Calculate .  Let's use the LEs: 

 
 
; . 

. 
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We deduce   . 

2) Calculate .  We recall: 

 

; 
 

; . 

  

  

 

 

 

 
 

We deduce 

 



 

18 

 

 

Then   . 

NB: by calculating the LE at a lower order, we could not have concluded, 

because we would have obtained  which remains an 

indeterminate form. 

3.5.2. Equivalences: 

1) Give simple equivalents close to 0 for the following functions: 

a)  b) . 

It is a question of determining the first terms of the LEs. 

a)  . We have the LEs: 

 and 

,  

then for  

. 

To order 3 we’ll have  .  

We deduce 

 

So close to 0 we have . 
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b) . 

We know the LEs:  

;  

 and . 

We deduce 

 

So close to 0 we have . 

2) Give an equivalent close to  of  . 

Reminder: 

then close to 0 we have 

 

 

 

Noticing that , we deduce that close to  we have 
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Adding these results, we get 

 

So close to   . 

3.5.3. Others : 

Find the tangent of the graph, at point of abscissa , of  a function  defined by 

; and specify the position of the graph with respect to the tangent  

Let's use the LE of  at point . , ; then  

 

We deduce the equation of the tangent . 

The position of the graph with respect to the tangent depends on the sign of 

 

which is negative; this means that the graph is below the tangent. 
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Chap 2 :  Integration  

1 

Definition: (primitive)  

Let  be an interval. A function  admits a primitive if 

there exists a differentiable function  such that 

,  

 is called primitive of . 

 

Proposition (Existence of primitives) 

If a function  is continuous then  has a primitive. 

 

Properties 

✓ If  is a primitive of  then, for any real c , the function  is 

also a primitive of  (an infinity of primitives). 

✓ Any primitive of  is necessarily of the form  for some real 

constant c. 

Notation : The set of primitives of a function f is denoted by  

(indefinite integral of ). 

Remarks :  

1) The variable  in  is mute in the sense that it can be changed: 

 

2) If  then  is the only primitive that vanishes at a. 
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1.1. Common function primitives 

   

  

2 

Fundamental formula of integral calculus :  

If a function  is continuous on the interval  and if  is a primitive 

of  , then 

 

Furthermore, for every , 

 

N.B.: In practice, an integral is the continuous analogue of a summation of 

infinitesimal quantities. 

2.1. Properties 

Properties : 

 Let , : be two integrable functions on , then  

✓ Linearity :    :  
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✓ Positivity :     If      then 

        

✓ Absolute value : we always have 

    

✓ Chasles's relation : for every :  

   . 

In particular    

✓ Parity:   for all ¸  

1 ) if  is even :   

 

2) if 
 
is odd :   . 

3 

3.1. Change of variable 

Theorem: 

If G is a primitive of g  and  a differentiable function; then we 

can calculate the integral  by setting . 

We obtain  so that  then 
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Applications: 

    

    

Exercise : Calculate primitives of: 

 1)   2)
 

 

Correction 

1) the function  is continuous on  (quotient of continuous functions, denominator 

don’t vanishes) thus admits a primitive  on .  

Put  then , we deduce 

. 

2) . 

the function  is continuous on  (composed of continuous functions, 

denominator don’t vanishes) thus admits a primitive  on 

.  

Put  then , we deduce 

 

Exercise 

Look for the Primitives of  

  1)     2) . 
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Correction 

1)  is continuous on  as a quotient of continuous functions, hence  admits a 

primitive on . 

For  we get  which is a derivative of  (see table of primitives). 

Therefore, primitives of  are the functions 

 where       

2) / is continuous on  as composition and quotient of continuous functions, hence 

admits a primitive on . 

For we have  which is a derivative of  (see table of primitives). 

Therefore, primitives of  are 

  where    

Exercise 

Calculate:  1)   2)  

Correction 

1)  in the denominator , roots are  and .  

The denominator does not vanish on ;  is continuous and therefore integrable on 

. 

Let's decompose into simple element 

 

then  multiplying by  and setting  we get   

then multiplying by we get  
 

Consequently  
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2) in the denominator , the denominator never vanish;  is 

continuous on  and then  is integrable on . 

We put the trinomial in canonical form:

 

We make the change of variable    , we deduce    ;   then 

 

We have   and  .  We conclude  

. 

Exercise 

Calculate primitives of:  1)  2)
 

 

Correction 

1) the function  is continuous on  (product of continuous functions) thus admits a 

primitive  on .  

Put  then , we deduce 

 

2) the function  is continuous on  thus admits a primitive on

  and  Since  we 

have to seek real numbers   such that  

for all  :  

,  and 

; 
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then   

We deduce primitives of   : 

  
 

3.2. Integration by parts 

Theorem :  

Let u and v be two functions of class  on an interval I, and a and b be 

two reals of I;. then 

 

NB: This technique applies well to products of polynomials with 

trigonometric functions ( , ) or exponential functions ( ). 

Exercise 

1) Calculate the antiderivative  that vanishes at 0. 

2) Calculate:  

Correction 

1) We are looking for the function . The function  is 

continuous on  and therefore is integrable. Let's use the by parts rule 

Put  and ,   then   and .  

For any real x, we have:

  

Consequently   . 

2) is continuous on , so integrable. Let’s integrate by parts. 

Put  and ,  then   and . 
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Exercise 

Calculate  1)   2)  

Correction 

1) The function  (product of continuous functions) is continuous on  and 

therefore is integrable. Let us Integrate by parts : 

Put  and ,  then   and . 

Then 

  (EQ) 

To calculate  let us set  and ,  then   and 

. 

 

We replace in (Eq) 

. 

Hence    , 

we deduce   

2) The function  (product of continuous functions) is continuous on , 

therefore integrable. To integrate by parts : 

Put  and ,  then   and . 

  (EQ) 

Let's calculate .  

Set  and , then   and . 

 

We replace in (Eq) 

. 
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Hence    , 

we deduce   

3.3. Integration of rational functions 

Let's see in an example how to integrate the rational function 

       

with ,  and   

Consider the function . First, we try to write a fraction of 

type  (which we know how to integrate in ). We have  then . 

 

For the first part E(x) we have  

. 

For the second part D(x), three basic situations can occur in general: 

First situation: The denominator  has two distinct real roots 

. Then  can be written  

. 

Integrating, we’ll get we have 

. 

on each of the intervals . 
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Second situation: The denominator  has a double root . 

Then  can be written  

. 

Integrating, we’ll get we have 

. 

on each of the intervals . 

Third situation: The denominator  has no real root. We will see 

this case later. 

Let us return to example below and consider the second part and let’s 

calculate 

. 

In the denominator we have , denominator has no real root, so 

we will write it in the form  (which a primitive is arctan(u)) 

 

then 

. 

Put  then,  i.e.  and we deduce  
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3.4. Integration of irreducible rational functions 

Let  a rational fraction, where P(x) and Q(x) are polynomials with 

real coefficients and . So, the fraction  can be written as the 

sum of a polynomial E(x) (integer part) and simple elements D(x) of one of 

the following forms:  

    or   with  

where , ,  and . 

We can easily integrate the integer part E(x). Our interest is how to integrate 

the simple element part D(x). 

Integration of  :  

1) If  then  

    , 

on each of the intervals . 

2) If  then  

  , 

on each of the intervals . 

Integration of  with . First, we try to write a 

fraction of type   where  then  : 
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For the first part we have  

1) If  then  

 . 

2) If  then  

. 

For the second part; since  we have to write the denominator 

in the form  where  is in the form , 

. 

1) If  then  

  . 

2) If  then  

   . 

An integration by part permits to pass to  … 

Consider the function . First, we try to write a fraction of 

type  (which we know how to integrate in ). We have  then . 

3.5. Integration of trigonometric functions 

To calculate primitives of the form  or of the form 

, where P and Q are polynomials, we can reduce calculus to 

integrating a rational fraction, using here following methods: 

• Bioche's rules which are quite effective but do not always work; 
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• the change of variable  works all the time but leads to 

more calculations. 

The rules of Bioche: We note , then we have 

 and . 

• • If  then we perform the change of variable . 

• • If  then we perform the change of variable 

. 

• • If  then we perform the change of variable 

. 

Exercise 

Calculate   

Correction 

, we can verify that 

. 

So, we will we perform the change of variable , . Then 

. 

The change of variable  : We use the rules. 

 and . 

Exercise 

Calculate    

Correction 

Put  then  and , consequently 

. 
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 and . Then 

. 

4 

4.1. Definitions and examples 

Definition : 

• We can extend the definition of the integral over  with : 

1) to unbounded functions on an open interval. 

2) to unbounded intervals 

• The principle is to consider  then to pass to the limit 

   and/or  . 

1) If the limit exists, we talk about convergent integral 

2) If the limit does not exist, we deal with divergent integral. 

• This kind of integral is called "improper integral" or "generalized 

integral" . 

Example : 

Riemann integral :     exists if and only if . 

Indeed, 

➢ if : .  

The integral diverges. 

➢ If   

  . 
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• For :  

 . 

The integral converges. 

• For :  

 . 

The integral diverges. 

Exercise 1 : 

Study the existence of integrals  1)   2) . 

Correction 

1) The function  is continuous on  but not bounded at 0.  

For all  the function can be integrated on  and 

 

Passing to the limit :  . 

 is a generalized integral that exists.  We have  . 

2). The function  is continuous on  but not bounded at 0.  

For all  the function can be integrated on  and : 

 

We pass to the limit:  . 

 is a generalized integral which does not exist.  

The generalized integral  . diverges. 

Exercise 2: 

Study the existence of integrals  1)   2) . 
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Correction 

1) The function  is continuous on  but the interval is unbounded.  

For all  the function is integrable on  and : 

 

We pass to the limit:   . 

 is a generalized integral that exists. We have  . 

2) The function  is continuous on  but the interval is unbounded.  

For all  the function can be integrated on  and : 

. 

Let's pass to the limit:    and 

. 

Consequently  is a generalized integral that exists.  

We have  . 

4.2. Convergence criteria 

We will note  and . 

Theorem (comparison criterions):  

Let and g be two functions defined on an interval . 

Under the assumptions that   , 

1) if  converges then  converges and 

  ; 

2) if  diverges then  diverges. 
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Exercise: 

Study the convergence of the integral    . 

Correction 

1).    and 

    . 

We deduce that    converges   and we have . 

 

Theorem (equivalence criterions):  

Let and , be two functions defined on an interval ;  

we assume that:   ( and   are equivalent close to b ) then  

  and    are of similarly nature. (both converge or both 

diverge) 

Exercise: 

Determine the nature of the integral   . 

Correction 

  and  

 

We deduce that  converges if and only if  i.e. . 

Example: (Euler's Gamma function) 

Euler's Gamma function is defined by : 

   . 

It is a convergent generalized integral. 
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For  we have  and then : 

    . 

For  we have ,  and ; consequently 

. 

 

 

Note:  the formula  shows that the gamma function is an 

extension of the notion of "factorial". 

4.3. Absolute convergence 

Definition  

Let  be a function defined on  ; we say that  is absolutely 

integrable or that  is absolutely convergent if 

  . 

Theorem:  

absolutely convergent integral convergent integral. 

Example: 

Let us study the convergence of the integral  for . 

Properties : 

1) For every  :   , 

2) for every  :  , 

3)   

4) Stirling's approximation:  
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We have  

 

because  is a Riemann-type integral which converges for  

 

So  is an absolutely convergent integral and from the above 

theorem we deduce that  is a convergent. 
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Chap 3 : Ordinary Differential Equations (ODE) 

1 

Definition (differential equation ordinary ): 

✓ An ordinary differential equation is a relation between an 

unknown function (of one variable x ) and its derivatives. 

  . 

✓ The order of a differential equation corresponds to the maximum 

degree of differentiation to which the unknown function has been 

subjected.  

Thus, a differential equation of order n is an equation of the form 

   

✓ If the coefficients relating to the unknowns are constants, 

the equation is said to have constant coefficients. 

✓ If the coefficients relating to the unknowns are functions of 

x, the equation is said to have variable coefficients. 

✓ Any function that satisfies, for all x, the equation 

is a solution of this equation. 

✓ Solving (or integrating ) a differential equation consists in 

determining the set of functions which are solutions to it . 

2 

A differential equation of the prime order is of the form 

      or   . 

Examples.  

1) Here are some easy to solve differential equations. Find a function, 

solution of the following differential equations: 

a)   b)    c)  
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Answer : These are (simple) first-order differential equations. The solutions 

are the primitives of the second member:  

a) 
 
 b) ,  c)  

2) Consider the differential equation .  

Check that  is a solution on . 

Answer : These are first order differential equations with variable 

coefficients. We replace  to see if it satisfies the equation:  

on the left:  

on the right:   

therefore effectively  is a solution of the 

differential equation  for all . 

3) Same question for  and . 

Answer : These are second-order differential equations with variable 

coefficients. We substitute  to see if it satisfies the equation:  

we have  ,    and  . 

We replace in the equation  

=0, 

therefore effectively  is a solution of the 

differential equation  for all . 

2.1. Linear 1st order ODE  

The linear case can be written more simply: 

 

Multiplying by , said integration factor, we get 

. 

We Look for 
 
such as   :   
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In this case we have , 

then we can deduce the solution 

.
 

Method : 

 to solve the differential equation  

✓ we calculation of the integrating factor ; 

✓ by multiplying by  we obtain an equation of the type 

  . 

✓ We easily integrate  to find 

  . 

Exercise 

Solve the following differential equations. 

1)    2)  .   

3)  .  4)  . with . 

Correction   

1)  is a first order linear equation. 

Its integrating factor is  . 

Multiplying the equation by  we get: 

; 

hence by integrating we’ll get 

  or   . 

2) : it is a first order linear equation. let's write 

, 
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the integrating factor is given by  . 

Multiplying the equation by  we’ll get: 

; 

Integrating, we get the solution: 

. 

3)  is a first order linear equation. 

Its integrating factor is  . 

Multiplying the equation by  we get: 

; 

By integrating we obtain: 

  or  . 

4) . with initial condition . it is a first order linear equation 

which is written 

 

 

Its integrating factor is 

. 

Multiplying the equation by  we get: 

; 

hence by integrating 

  or  . 

With the initial condition  we will have 

. 

Thus the particular solution is 

   . 
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2.2. 1st Order ODE Separable 

A first-order ODE can be presented in the form 

. 

There is no general method but an interesting special case is when the 

functions are  separable variables i.e. : 

  and  . 

then the equation is said to have separable variables and the solution is 

obtained by simple integration 

Method:  

with the hypothesis  we can write: 

, 

then we integrate. 

Example : 

Consider the differential equation   .  

It is an equation with separated variables. By integrating on both sides 

   either    

with . Let , then the general solution is given by 

 

which represents a family of concentric circles centered at the origin of the 

coordinates and of radius c. 

Exercise 

Integrate the following differential equations.  

1)  ;  2)  ;  3)    . 
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Correction   

1)    can be written in the form  . 

By integrating in both sides we get:   ,  or 

      . 

NB:  if we pose  then the trigonometric formula 

  will allow us to write 

. 

2)   can be written in the form 

. 

Multiplying by we have    for  we get . 

Multiplying by we have  ; for  we’ll have  

then  and . 

The equation becomes 

. 

Integrating we obtain: 

, 

multiplying by 6 and using the properties of the logarithm we’ll have: 

 or . 

3)    .  Can be written    , 

by integrating (see table of primitives) we obtain: 

  or . 
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3 

✓ A differential equation of the second order is of the form 

  or  . 

✓ A linear differential equation of the second order is of the form 

  . 

✓ A linear differential equation of the form 

  .  

is said to be homogeneous or without second order. 

3.1. Homogeneous equation with constant coefficients 

Consider the linear and homogeneous differential equation with constant 

coefficients of order 2: 

 

where a, b and c are real constants. 

Let's look for solutions in the form ; so 

      . 

Substitute these expressions into the equation , we’ll get: 

; 

as  ,  we must have 

. 

NB: if  and  are solutions of the equation  then, by linearity, 

 is also a solution of the equation . Indeed 

 



 

47 

 

Resolution (to remember ): 

To solve the linear homogeneous 2nd 
order 

ODE 

   ; 

we must consider its characteristic equation 

  
 
; 

and calculate the discriminant . 

1) If : the characteristic equation  admits two distinct real 

roots  and ;  

the functions    and    are solutions of the equation 

, then:  

  

is the general solution of the equation . 

2) If : the characteristic equation  admits a (double) root 

 and the functions   and  are solutions of the 

equation , then :  

  

is the general solution of the equation . 

3) If  : the characteristic equation
  

admits two conjugate 

complex roots 

    and    

we deduce the existence of complex solutions of the equation . 

   and  . 
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We can obtain real solutions 

     

and    

then   

     

is the general solution of the equation . 

NB: Often in physics we rewrite this solution in the form 

   with . 

Example 1: let's solve the equation  . 

characteristic equation :    ; roots:    and  , 

general solution :  . 

Example 2:    

let's integrate the equation  with initial conditions ,

. 

characteristic equation:   ; roots:   and . 

general solution :  ; 

particular solution : we have . Applying the initial 

conditions, we’ll get 

 

Calculate this we will obtain . 

Consequently, the particular solution is   
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Example 3: Solve  with  and . 

Characteristic equation :  , roots:  and ; 

complex solutions :  ; 

real solutions :   and ; 

general solution :   . 

particular solution :   

 

We will get   then 

The particular solution sought is  

Example 4: Integrate the equation  ; 

Characteristic equation:  ; roots:  . 

general integral:  . 

Exercise 

Solve the following differential equations. Observe the curves of the solutions and 

compare. Explain the differences. 

1)   2)   

  3) ;     and   

Correction   

1) Let the equation  . 

Characteristic equation:   ;   

roots:    and  , 

complex solutions: ; 

real solutions:     and  ; 



 

50 

 

general integral :   . 

      

2) Let the equation  . 

Characteristic equation:  ;  

roots:  and , 

complex solutions ; 

real solutions   and  ; 

general integral :  . 

       

3) Consider the equation: ;     and   . 

Characteristic equation:   ;  

roots:  and , 

complex solutions:  ; 

real solutions :    and   ; 

general integral   

initial conditions :   ; 

           

we’ll find . 
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The particular solution :   

      

3.2. Inhomogeneous Linear Equation (with second member)  

Theorem:  

The general solution of the inhomogeneous equation (with second member): 

    

is the sum of a particular solution  plus the general solution y of the 

corresponding homogeneous equation 

. 

Question :  how to find a particular solution ? 

3.2.1. Determination of coefficients 

The second member allow to conjecture the form of the particular solution 

(see table) and then we deal with the indeterminate coefficients method. 

Whether    Choose    

  

  
  

 or   
 

where the smallest value for which is no longer a solution of the associated homogeneous 

equation. 
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Example 1: Find the solutions of . 

Let's find the solutions of the associated homogeneous equation :  

 

characteristic equation ,  ,  ;  

general solution :  . 

Particular solution  (of the form of the second member): . 

Substituting ,   and  , into the equation we get 

, 

, 

by ID:  ,  , ,
 

we deduce:   
, , . 

The particular solution is    

The solution of the inhomogeneous equation is 

. 

Example 2: Find the solutions of . 

Let's find the solutions of the associated homogeneous equation :  

, 

characteristic equation: , ,  ;  

general solution :  . 

Particular solution  (of the form of the second member):  ; 

we replace ,  and , in the equation we’ll get 

, 

 and so  . 

The particular solution is   . 

The solution of the inhomogeneous equation is  

. 
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Example 3: Find the solutions of . 

Let's find the solutions of the associated homogeneous equation :  

, 

characteristic equation:  ,  ,  , 

general solution:  . 

Particular solution  (of the form of the second member):  . 

By substituting ,    and , 

, we’ll get 

 

, 

then      and   , we deduce   and . 

The particular solution is    

The solution of the inhomogeneous equation is 

. 

Example 4: Find the solutions of . 

Let's find the solutions of the associated homogeneous equation :  

 

characteristic equation:  ,   
.  

general solution:  . 

Particular solution  (of the form of the second member):  . 

substituting , , , we’ll get 

, 
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Remarque : By identification we notice that we cannot find such A and B. 

 is solution of homogeneous equation. 

NB (important):  

If the chosen form  is already a solution of the associated 

homogeneous equation, we must seek a particular solution in the 

form 

 

with  such that is no longer a solution of the associated 

homogeneous equation. 

Therefore, we must look for a particular solution of the form 

.
 

We calculate and , we substitute in the equation to obtain, 

   then       and  . 

The particular solution is    

The solution of the inhomogeneous equation is 

. 

3.2.2. Variation of the constant 

This method has the advantage of being general, it applies to any kind of 

differential equation, but the calculations are more consistent. 

Method:  

We take the general solution of the homogeneous equation (Eh) and we 

transform the constants  and  into functions  and … 

Example :   1) Check that  

   2) Find the solutions of . 

1) let us set  and note that 

   

. 
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, 

. 

2) Let's find the solutions of the associated homogeneous equation:   

, 

characteristic equation:  ,   , 

general solution:  . 

Let's use the constant variation method :    Determine  such that 

 

is solution of the inhomogeneous equation  . 

By differentiating we get 

. 

Let us choose for simplicity  such that 

 (A) 

then we will have  

    (I) 

A second derivation gives 

 (II) 

By replacing (I ) and (II) in the equation we obtain after calculation 

 (B) 

In summary  must verify the equations (A) and (B): 

 

From ( A) we have:     (C) 
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We replace in (B):    

by integrating    

Resuming   in ( C): 

 

by integrating   . 

Consequently the solution of the inhomogeneous equation is  

 

 

 

The solution is finally 

 

4 

1)  Solve  , 

with the initial conditions . 

Solution :  

characteristic equation:   ;  

roots:   let's check for , we have  

  then  is a root. 

 then  is a root. 

We deduce  

, 

and after calculation: 

; 
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the roots are:        . 

Solutions:      

 

   . 

General integral:   . 

Particular solution:  we need the derivatives 

 

 

, 

thus  

. 

Solving the system we get: 

   

 

   . 

Hence the particular solution is :  . 

2)  Solve    

with the initial conditions . 

Solution :  

characteristic equation:    ; 

the roots:         . 

solution :      

 

   . 

General integral:  . 

particular solution:  we need the derivatives 
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thus  

 

Solving the system we get: 

   

 

   .. 

Hence the particular solution is :  . 

 

3) Solve   

Solution :  

characteristic equation:    ; 

the roots:        . 

solutions of the homogeneous equation :

  

  

         . 

Solution general of the homogeneous equation :  

  . 

Particular solution:  it must be in the form   

but since we already have the solutions  and  

we must look for the solution in the form . 

By differentiating and then substituting in the equation we get 
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and by identification we obtain     and   , hence  

the general solution is: 

 

4) Solve   

Solution :  

characteristic equation:    ; 

roots:       . 

Solutions of the homogeneous equation : 

  
         . 

General solution of the homogeneous equation :  

    . 

Special solution: 

The second member of the equation is a sum so we can simplify the 

calculations by considering 

 

where  

a)  will be particular solution of .  

Let us pose ,  but as  is already solution then one must 

seeks . 

b)  will be particular solution of . Let's put . 

c)  will be particular solution of .  

Let's put  but as  is already a solution then we have to 

seek . 

The resolution of each case will give 

    , 

and   . 

the general solution is: 

   .  
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Chap 4 : Functions with several variables 

1 

1.1. Introduction 

The functions of several variables are natural, for examples of that: 

1) temperature depends on latitude, longitude and time: 

 

2) the cost of an advertising brochure depends on its format (A4, A5), the 

number of pages, the number of colors used, etc. 

Definition 

✓ A function  of  with real values is a relation that corresponds to any 

point  of  at most one real number . 

✓ The domain of definition of  is the set of points 

which have an image by . 

✓ The image by f of D is the set . 

✓ The set of points  is the representative curve 

of . 

N.B.: we often use the notations  if n= 2 and  if n= 3. 
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Example 

 

N.B.: 

The geometric representation becomes heavier than for functions of a single 

variable (n variables are visualized a priori in a space with n +1 dimensions). 

1.2. Functions of two variables 

When n = 2 , the graph  is three-

dimensional . The axes relating to the variables, x and y , are 

conventionally located in a horizontal plane (the domain D then appears as a subset 

of this plane), while the vertical dimension is reserved for the values of z . 

   

Exercise 

Determine and represent the domain of definition of the functions given by: 

. 

The domain of definition of the function 

 is given by . 

It is represented in a half-plane. 

In addition, the values taken by the function go 

through the entire set of positive or zero real numbers:  

    . 

the xy plane equation: z=0; 

the xz plane equation: y =0; 

the yz plane equation: x =0 
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Correction   

   

 

      

 

      

, .This is the entire plane 

deprived of the origin.  

1.2.1. Surface representation 

        

 

 

This is the intersection of the positive y half-plane the lower 

part of the parabola of equation . 

 

 

 

 

 

This is the intersection of the positive y half-plane the 

lower part of the line of equation . 

 

 

 
 

 

This is the intersection of the positive y half-plane the 

lower part of the line of equation . 

 

 

 

The altitude  is 

used to illustrate the graph 

of the function  . 

.
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Example : 

 

 

1.2.2. Partial functions 

The partial functions associated with  are functions of  in  

given by the intersection of the representative surface of  with “ vertical 

planes parallel to the axes ”. 

   

     

Example : Thanks to partial functions we can guess the surface 

representation of  simple functions: 

Example :  (Horse saddle) The graph of the 

function  defined by 

     

is a surface that has the form  of a horse's 

saddle. 
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Exercise 

      

Correction   

   

1) If  then  

 

thus, the representative curve de  is as follow 

 

2) If  then 

 

thus, the representative curve de  is as follow 

 
3) If   then 

   

thus, the representative curve de  is as follow 

 

1) Guess the expression of a function whose 

iso-0 (i.e. the level 0 line) represents the bank 

of a straight river. 

2) Modify the previous function so that the 

water flows in the direction of positive x 

1)  We have     

and     

therefore 

     . 
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Exercise 

      

Correction   

      

    

1.2.3. Planar representation 

The shades of gray in a black and white photo are the representation of a 

function defined on a rectangle with values in the interval [ 0; 1]: 0 black, 1 

white. We speak of planar representation. 

Example  

Surface and planar representation of the function . 

2)  For water to flow in the direction of positive x we must 

have    , 

i.e. a line inclined towards the positive x, and 

. 

We deduce    . 

   for example, for a slope of 10%. 

1) Guess the expression of a function whose 

iso-0 (i.e. the level 0 line) represents the 

bank of a straight river. 

2) Modify the previous function so that the 

water flows in the direction of positive x 

1) We have     

et  a curve parallel to a y with a form , 

thus  . 

Therefore   . 

2)  For water to flow in the direction of positive x we 

must have  , 

i.e. a line inclined towards the positive x, and  

     . 

We deduce  . 

  for example, for a slope of 10%. 
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Color shades are also used in planar representation. 

Example ( Weather Maps ) 

 

1.2.4. Representation by level lines 

Recall that to obtain the partial functions, we considered vertical cuts of 

the graph of a function of two variables. 

In the same way, we can consider horizontal cuts to obtain plane curves, 

called curves or level lines. 

Definition (Level lines):  

Let  And a function ; the level curve  of  is the 

projection onto the equation plane 𝒛 = 𝟎 ( plane of (x,y) ) of the 

intersection of the representative surface of  with the horizontal 

plane 𝑧 =  𝑘, i.e.  . 
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Example ( Topographic maps ) 

In the relief of a region, a contour curve indicates points of the same 

altitude. By drawing the contour lines with their corresponding altitude, 

we obtain the topographic relief map  

 

 

In practice, different level curves are 

represented simultaneously to 

visualize the progression of the graph. 

This representation is similar to 

geographical maps where the level 

corresponds to the altitude. 

Exemple : ( Weather maps)  

On a weather map, the contour 

lines are isotherms (lines 

connecting points of equal 

temperature); or isobars (lines 

connecting points of equal 

pressure). 
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Exercise 

1) Determine and represent the domain of definition of the function

 defined by . 

2) Determine and represent its contour lines. 

Correction   

      

 

      

2 

 We recall the "Euclidean " distance defined in (n=2,3) by  

n=2:    

n =3:  

Limit at a point in :  

Let be  a function and . 

We say that the limit of when  tends to  is equal to  (we write 

 or ) if:  

for everything , there exists  such as .  

This limit may exist even if is not defined in . 

1)  

    

 

 

 

2) 

 

These are translated to the right of the curve 

defined by .  

 

 

https://fr.wikipedia.org/wiki/Distance_euclidienne
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We say that the limit of when tends to  is equal to  (we 

write  or ) if:  

for everything , there exists  such as . 

We say that the limit of when  tends to  is equal to  (we 

write  or ) if:  

for everything , there exists  such as . 

Exercise 

By copying from the previous definition give those of: 

1)   2)  

Correction   

 

1)  or  if: 

, it exists  such as 

. 

 

2)  or  if: 

, it exists  such as 

. 
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N.B.: 

Unfortunately, it's not simple anymore for , because there are an 

infinite number of possible directions to go towards a point . 

 

Proposition:  

Let  be a function. 

  if and only if  for any direction D 

(curve in passing through ). 

Example 

 We want to calculate  

Correction   

1) the domain of function  is the set . 

2) We look for continuous curves defined on , which pass through , and 

we calculate the limit of the restriction of to these curves: 

i) on the line of equation  (x axis) we have: 

 

we deduce   

ii) on the line of equation  (y axis) we have: 
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we deduce   . 

The limit being different in two distinct directions, we deduce that

 does not exist. 

iii) on the equation parabola  we have: 

 

we deduce   . 

Remark: we have the same limit on two directions (  and ) but that 

does not mean that the limit exists (why?) 

Proposition (Uniqueness of the limit ):  

If a sequence is convergent, its limit is unique. 

 

2.1. Calculation of limits in  

    

When n = 2, it is often useful to switch to 

polar coordinates 

  

to reduce the calculation of the limit of a 

function of two variables x and y to the limit 

on a single variable r. 
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We can then use the following sufficient conditions: 

Proposition: (sufficient conditions)  

1) If there exists and a function  such that in the 

neighborhood of we have 

 

then   

2) If there exists  and a function  such that in the 

neighborhood of  we have 

  

then   does not exist. 

Exercise 

Show using polar coordinates that does not exist. 

Correction   

Let's put it down  and , we 

have 

 

consequently    

As  is arbitrary we can have any values as limit. 

So does not exist. 

Exercise 

Do these limits exist: 1)  2) . 
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Correction 

1) Put . 

    and    . 

The limit does not exist. 

2) Put  and , we have 

, 

then  . 

Exercise 

Calculate the limit if it exists:  . 

Correction 

Put , because of the logarithm, let us approach the origin 

in two different ways, a straight line and a parabola : 

  

. 

We deduce that the limit does not exist. 

Exercise 

Let f be the function defined by . Show that  : 

1) according to the definition (use the Euclidean norm), 

2) by comparisons,  3) using polar coordinates. 
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Correction 

1) , we have to find  such that .  

We have 

, 

then if  is given, it suffices to take a number such that . (for 

example to  take  and to  take  ...) 

2) For everything  we have 

,   then 

. 

Consequently   . 

3) Let us put  and , we have  

 

So . 

2.2. Continuity  

Definition:  

1)  is continuous at  if 

. 

2)  is continuous on domain  if it is continuous at 

every point of D. 

 

Proposition ( Properties ): 

✓ Continuous functions of several variables enjoy the same properties 

as continuous functions of a single variable, 
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✓ Elementary functions such as polynomials, exponential, logarithmic 

and trigonometric functions are continuous in their respective 

domains of definition. 

✓ The composite (sum, product, quotient etc...) of continuous 

functions is a continuous function. 

Example :  

1)  is continuous in  (second degree polynomial in 

two variables). 

2)  is continuous in  (sum of an exponential and a 

polynomial). 

3) . 

   . 

   

Exercise 

the multivariable function be defined on  by 

 

 is it continuous on ? 

Correction 

For  the function is rational therefore it is continuous on 

. 

To study the continuity at the point , let us put  and , then 

for  we’ll have 

; 

 is continuous on D (exterior of the parabola opposite in the left 

half-plane) as the sum of the logarithm of a polynomial 

(compound function) and a constant. 
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so where  continues at (0,0). 

Function  is- continues on . 

2.3. Theorem extreme values 

Theorem : (Extreme Values)  

Let  compact (i.e. closed and bounded) . If a function 

 is continuous then it admits a maximum and a 

minimum (“extreme values”) on ; i.e. it exists  such 

that  . 

 

3 

3.1. Directional derivatives 

The unique derivative of a function , when it exists, is linked to 

variations in the function as the variable travels along the x-axis . 

It is given by 

     .  

Note that the real axis offers only one possible direction of movement 

(horizontal). 

For a function with two variables , whose graph is a surface of 

, the situation is very different. In fact, in the plane  there is an 

infinity of possible directions. 
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It may be interesting to study how a function  involves when the 

variable follows one or the other direction of the plan. We can then speak of 

a directional derivative of the function , which is given by the limit of the 

rate of increase when its argument (x , y) vary in a fixed direction: 

     

where  is a given direction. 

N.B.: for reasons of simplification we will now treat the case n=2 (possibly 

n=3). The general case is done in the same way. 

In this case the previous limit is written when : 

. 

3.2. First order partial derivatives and gradient 

The set of variables ( the plane in our case ) being provided with two 

reference directions (  for x axis and  for y axis ) gives 

special interest to the derivatives in these directions which will be called 

partial derivatives. 

3.2.1. Partial derivation 

Definition: ( Partial derivatives )  

Let us be a function with multiple variables and real values  

defined on an open domain  and a point . 

✓ The partial derivatives of  at  is the derivatives of the partial 

functions  and  i.e. 

1) partial derivative of f with respect to x at the point : 

. 

2) partial derivative of f with respect to y at the point : 

. 
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✓ If all first partial derivatives of exist, we say that f is differentiable. 

Notation : the partial derivative  ( respectively ) is also noted  ( 

respectively ) or  ( respectively ). 

Remark : 

In practice, to calculate the partial derivative  (resp. ), we derive f such 

as it is a function of the single variable  with the other variable, 

 considered as constant. 

Example : 

Let the function be . We have 

 and  . 

Exercise 

The annual production of wheat B depends on the average temperature T 

and the average precipitation R. Scientists estimate that the average 

temperature is increasing by  and precipitation is decreasing by 

. They also think that for the current level of production  we 

have and . 

1) Write in terms of ratio the variations of temperature and precipitation?  

2) What do these partial derivatives mean? 

Exercise 

Correction 

1) The average temperature is increasing at a rate of : . 

Precipitation decreases by :   

2) . : An increase in average temperature (while keeping annual 

precipitation constant) results in a decrease in wheat production at current 

production levels. 
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: an increase in annual rainfall (while keeping the average 

temperature constant) causes an increase in wheat production. 

3.2.2. Properties of partial derivation 

Properties: (of the partial derivation) 

Partial derivatives have the same properties as derivatives of 

functions of a single variable. Especially: 

✓ Elementary functions such as polynomials, rational and irrational 

functions, exponential, logarithmic and trigonometric functions are 

differentiable in their respective domains. 

✓ The sum, product, quotient, etc. of differentiable functions is a 

differentiable function. 

✓ The derivation rules are similar to the derivation rules with a single 

variable, (except that relating to the derivation of compound functions 

which are less simple to define). 

Example 

1) Let  defined by .  is continuous and derivable 

(polynomial function): 

 considered constant we obtain:  . 

 considered constant we obtain:  . 

2) Let  defined by .  is continuous and derivable 

(compound of polynomials and logarithm): 

y and z considered as constants gives: 

    . 

x and z considered as constants gives: 

    . 
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x and y considered as constants gives: 

    . 

3.2.3. Gradient 

Definition: (Gradient)  

The gradient of the function  evaluated at the point 

, noted  (reads nabla  at point A ) or again 

, is the vector whose components are the first partial 

derivatives of  : 

. 

It is orthogonal to the level curve of  passing by . 

Example 

1) Consider the function  defined by .  

The gradient of is the vector . 

     

2)Consider  then 

 

We obtain the representative graphic  of   

 



 

81 

 

 

In the figure above we consider the point  in the contour curve 

which has the equation . We have in this point  

    . 

The line tangent to this curve at the point  has the equation 

which is orthogonal to . Indeed, the direction vector of the 

tangent is  hence the scalar product , 

which proves that the two vectors are orthogonal. 

Exercise 

Calculate the partial derivatives of order 1 of the following functions and 

write the gradient: 

1) ,  2) ,  3) ,  

4) ,   5) . 

Correction 

1) For we have: 

    and  . 

    

One can deduce the curve of  resulting on 

the inclination  because of value along 

y-axis  

.

 

The level curves of the function are given by 

, . 

It is a family of parabolas of equations 

 

The gradient is orthogonal to the level curve 

which passes through the point (x, y). 
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2) For we have: 

   and  . 

    

3) For we have: 

   and  . 

    

4) For we have:  

  and  . 

    

5) For we have:  

  and   

   . 

3.2.4. Derivability and continuity 

Unlike , in  the derivative existence (derivability) is independent 

of continuity. 

1)  if  and  is continuous and 

not derivable at . 

2)  if  and  is derivable and not 

continuous at . 

3) if  and  is neither derivable nor 

continues in . 
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3.2.5. Class function  

Definition: (class )  

If a function  is derivable and its partial derivative 

functions   are continuous on , we say that  is of 

class 𝑪𝟏
 on  and we denote . 

3.3. Compound functions 

Recall that the compound function of  and  is defined as follows: 

     . 

Similarly for a function with multiple variables , the 

variables  and  can be functions with one variables  (or many 

variables). 

3.3.1. Case of a single variable 

compound function :  

Consider the function ,  where the variables  

 and  are functions with variable . We pose 

. 

If the partial derivatives  and  of  exist and as functions (from 

to )  and  are derivable, then the function 

 is derivable and we have 

. 

N.B.: it might be simpler to remember this using differential notations: 

. 

Example 

Annual wheat production  is a function of the average temperature T 

and the average precipitation R. Scientists estimate that and 
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. Knowing that the average temperature is increasing by  

and precipitation decreases by ; estimate the current rate of change 

in wheat production dB/dt . 

Correction 

The current rate of change in wheat production is dB/dt 

. 

As the average temperature increases at a rate of we have ; 

and as precipitation decreases at the rate of : ; from where 

. 

Exercise 

Calculate  in the following cases: 

1) . 

2) . 

3) . 

4) . 

Correction 

1) 

    

2) 
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3) 

  

4) 

       

3.3.2. Case of two variables 

Compound function :  

Consider the function , where the variables  

 and  are functions with two variables . We pose 

. 

If the partial derivatives  and  of  exist, the partial derivatives 

 and  of and the partial derivatives  and  of  exist, then 

the function 

 

is derivable (i.e. admits partial derivatives) and we have 

. 

. 
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Exercise 

The functions  and  being given, calculate  and 

 in the following cases: 

1)  , 2)  , 3),  

4)  , 5)  , 6) . 

Correction 

1)   and  . 

2)   and  . 

3 )   and  . 

4)  and   

5)  and  , 

6)  and  . 

3.4. Differentiability 

Differentiability at a point corresponds to the existence of a linear 

approximation of the function at that point. 

For a function  (with a single variable), geometrically this 

corresponds to the existence of a line tangent to the graph in the 

neighborhood of the point . We know that there is equivalence 

between differentiability and derivability. 

In the case of functions of several, the equivalence disappears between 

(derivability) the existence of partial derivatives , , etc... 

and existence of a tangent plane. 
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3.4.1. Differentiable function 

Definition: (differentiable function)  

Let  be a function with multiple variables and real values defined on an 

open set  and let . 

We say that  is differentiable at  if there exist two constants 

 such that 

. 

N.B.: remember that  with  where 

 (we can use another equivalent norm like ). 

The application  is linear and it represents an 

approximation (linear approximation or approximation of first order) 

of  in the vicinity of . 

Remark : 

If  is derivable at  i.e. partial derivatives  and 

exist, then the linear map 

 

is candidate to be approximation (linear or of first order) of  in the neighborhood 

of . To confirm, just check if 

 

Exercise 

Using the definition, verify that the  following functions are 

differentiable at the point :  

1) ,  2),  

3) ,  4 ), . 
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Correction 

1) We have  ,   ,   

 and  then 

 

we deduce . Therefore  is 

differentiable at . 

2) We have , ,  

 and  then 

 

we deduce ; therefore  is 

differentiable at . 

3) We have , ,  

 and  then 
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we deduce ; therefore  is 

differentiable at . 

NB: we used the equivalence  near 0. 

4) We have   ,  

 and  then 
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we deduce ; therefore  is 

differentiable at . 

NB: we used the equivalence  near 0. 

Definition: (the differential)  

Let  a function be differentiable at . The linear application 

 defined by  

 

is called differential function of  at . 

Example 

Consider the function  defined by . 

 is continuous and differentiable ( polynomial function ); we have 

 and . The candidate linear map to be the 

differential is the function . 

 

In addition we have , therefore . 

 being arbitrary, we have just shown that  is everywhere 

differentiable and that its differential is defined by 

. 



 

91 

 

Example 

Consider the function  defined by .  

 is continuous and differentiable (polynomial function). 

We have  and . 

 

Consequently,  is everywhere differentiable and has the differential  

. 

3.4.2. Class  implies differentiability 

Theorem: ( stronger than differentiability)  

Let  be a function defined on an open set  and let 

. 

If  is of class  in the neighborhood of  (partial derivatives exist and 

are continuous) then  is differentiable at . 

Example  

Consider the function  defined by 

 

Show that  is of class ? is it differentiable? 
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Correction 

 continuous ?  

For  the rational function with non-zero denominator 

 is continuous on .  

For  

. 

 is continuous at (0,0). So  is everywhere continues. 

 derivable ?  

For  we have 

, 

. 

For : 

 . 

. 

 is differentiable at (0,0). Therefore is everywhere differentiable. 

Class  ?  

Partial derivative functions  and 

 are continuous on as rational functions 

with non-zero denominators. . 
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For  

 . 

. 

Partial derivatives are continuous at (0,0). We deduce the partial derivative 

functions  and  are everywhere continuous and hence . 

 differentiable ?  

Since  then  is differentiable because . 

N.B.: The converse is false. can be differentiable without being of class   

3.4.3. Tangent plane and linearization 

The notion of differentiability corresponds to the geometric notion of a 

tangent plane. Indeed, when  is differentiable at , we can, in a 

neighborhood of , approach  by . 

This corresponds geometrically to approaching the representative surface 

of , in the neighborhood of , by the plane of equation 

. 

 

The representative surface of the function  seems to 

coincide with its plane tangent to the point  when we zoom 

towards this point . 



 

94 

 

Definition: (tangent plane)  

Let be  a function defined on an open set  and 

differentiable at . 

The equation of the tangent plane, at (𝒙𝟎, 𝒚𝟎), to the graph of the 

function  is 

. 

 

Example  

Consider the function defined by 

. 

1) Determine and represent its contour lines. 

2) Calculate its first partial derivatives. 

3) Write the equation of the tangent plane to   in (0, 0). 

Correction 

1) . 

The level curves of  are the equation line  for  and the equation 

curves . 
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These are circles with center  and radius  with . 

 

2) , 

and . 

3) the equation of the tangent plane to   in (0, 0) is  

  that is  . 

Definition: (linearization)  

Let be  a function defined on an open set    

and differentiable at . 

We can approach the function , in the neighborhood of , by an 

affine function: 

. 

The function 

measures the error we make at the point  when we 

approach the value of  by the value of ; and since  is differentiable 

in . then . 

Example  

Consider the function  defined by  . 
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1) Show that  is differentiable and give its differential. 

2) Give a linear approximation ( of order 1 ) of  in the neighborhood 

of (1,0). Deduce an approximate value of  

Correction 

1)  is composed of differentiable functions so it is differentiable. 

We have  and  hence the differential: 

. 

2) Linearization  (linear or order 1 approximation) in the neighborhood of  is 

. 

Thus ; i.e. in the neighborhood of  we have  

. 

We deduce .  

With a calculator we can see that  

Exercise 

Knowing that a function  is differentiable and that , 

, , give an approximate value of .  

Correction 

The function being differentiable, we can give an order 1 estimate of . 

In the neighborhood of  we have 

. 

Especially   . 

Exercise 

We measure a rectangle and we obtain a width of 30cm and a length of 

24cm, with an error of at most 0.1cm for each measurement. Estimate the 

area of the rectangle. 
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Correction 

The area of the rectangle is given by the function  with  the 

width and  the length (in cm). The function is differentiable so by 

linearization we can give an estimate of order 1 of the area . 

For  small enough we have 

. 

therefore , for , we have (noticing that  is increasing for each argument) 

, 

. 

The area (denoted A) of the rectangle is between  and . 

4 

4.1. Functions with two real variables 

4.1.1. Fubini’s theorem 

 We now present the integral of a function of two variables, called a 

double integral, and we show how to evaluate it. 

   

Fubini’s theorem: If the domain allows it, we can swap the roles of x and y: 

Let  and  be two continuous functions on [a, b] 

with . 

Denote  the set of points   such that 

     et    ,  then 

 



 

98 

 

    

Example 

Let be ; we want to calculate the double integral  

    .  

We have 

 

Notice : 

Sometimes, by using the Fubini’s theorem, reversing the order of 

integration over an elementary domain, a double integral that is difficult to 

evaluate becomes relatively easy to solve. 

Example 

We want to calculate the volume of the solid which rises on the domain  of 

the plane Oxy delimited by the equation line  and the parabola a 

nd covered by the paraboloid . 

The domain  is therefore delimited: 

vertically by the paraboloid and the plane ;  

laterally by the line  and the parabola  which meets at 

 and  (it suffices to solve ). 

Let  and  be two continuous functions on [c, d] 

with . 

Denote  the set of points   such that 

     et    ,  then 
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Then, the volume is given by   . 

First method: 

  

Second method. 

  

4.1.2. Special case (separable variables) 

If  is the rectangle  and if  can be written in the form 

      , 

then 

  

Le domaine  peut être décrit par
 

 

 

Le domaine  peut être décrit par
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Example: 

Let  , we want to calculate the double integral .  

We have 

   

4.2. Applications 

Definition: (Area)  

Let a set  . The area of  is given by the integral 

. 

Example (Area of a disk)  

Let us calculate the area of a disk DR of radius 𝑅 > 0, we place ourselves in a 

coordinate system centered on the center of the disk, which therefore has 

the equation 𝑥2 +  𝑦2  ≤  𝑅2
. So 

𝐷𝑅 = {(𝑥, 𝑦) ∈ 𝑅2 ∶  𝑥2 +  𝑦2  ≤  𝑅2 } =  {(𝑟, 𝜃) ∈ 𝑅+
∗ × [0,2𝜋[∶  𝑟 ≤  𝑅 } 

∬ 1
𝐷𝑅

 𝑑𝑥 𝑑𝑦 =  ∫ ∫ 𝑟
𝑅

0

2𝜋

0

 𝑑𝑟 𝑑𝜃 =  ∫
𝑅2

2

2𝜋

0

 𝑑𝜃 =  𝜋 𝑅2
 

 

Definition: (Volume)  

Let a set  . The volume of  is given by the integral 

. 

Example (Volume of a sphere)  

Let us calculate the area of a volume of a ball BR of radius 𝑅 > 0 (without 

restricting the generality we will assume it centered at the origin)  
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                   𝐷𝑅 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅2 ∶  𝑥2 +  𝑦2  +  𝑧2 ≤  𝑅2 }

=  {(𝑟, 𝜃, 𝜑) ∈ 𝑅+
∗ × [0,2𝜋[× [− 𝜋

2⁄ , 𝜋
2⁄ [∶  𝑟 ≤  𝑅 } 
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Chap 5 :  Matrices. 

1 

Definition: 

✓ A matrix A is a rectangular array of elements of  or . 

✓ It is said to be of dimension m × n if the table has m rows and n 

columns. 

✓ The numbers in the table are called coefficients of A. 

✓ The coefficient located in the i-th line (line number i) and in the j-th 

column (column number j) is noted 𝒂𝒊,𝒋 . 

✓ The zero matrix, denoted Om,n, is the matrix whose all elements are 

zero. 

✓ Two matrices are equal when they have the same size and equal 

corresponding coefficients. 

✓ The set of matrices with n rows and p columns with coefficients in K 

is denoted Mm,n(K).  

Notation:  we will denote 

  or   

Or more simply  or . 

We can find  or  if there is no confusions about dimension. 

Examples.  

1) Matrices of dimension 2 × 3. .     and  . 

2) Square matrix of order 3. ,   . 
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Particular matrices: Here are some interesting matrix types 

✓ If m = n (same number of rows as columns), the matrix is called a square 

matrix. We note Mn(K) instead of Mn,n(K). 

The elements a1,1, a2,2,..., an,n form the main diagonal of the matrix. 

✓ A matrix that has only one row (m = 1) is called row matrix or row 

vector. We notice it   . 

  

  

  

Kronecker symbol :. If i and j are two integers, we call Kronecker symbol, is 

the real number δij, which is 0 if i is different from j, and 1 if i is equal to j. 

 

Then the general term of the identity matrix I is δij . 

  

✓ Similarly, a matrix that has only one 

column (n = 1) is called a column matrix 

or a column vector. 

✓ We call diagonal matrix any square 

matrix D = (dij)1≤i,j≤n such that dij = 0 for 

all . We notice it Diag(d1, d2, . . . , dn) 

✓ The matrix of order n, denoted In, is the 

diagonal matrix   Diag(1,1,...,1). 

✓ We say that a square matrix A = (aij)1≤i,j≤n 

is  

❖ upper triangular :  if :    i > j ⇒ aij = 0, 

❖ lower triangular :  if :   i < j ⇒ aij = 0. 

❖ An upper and lower triangular matrix is 

a diagonal matrix. 
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2 

2.1. Sum and products 

Addition of matrices:  

If A and B are two matrices with the same size m × n their sum  

C = A+ B  is a matrix of the same size m × n defined by 

cij = aij + bij 

Product of matrices with scalars:  

If A =(aij) is a matrix and α is a scalar, then their product is defined by 

α A = (α x aij). 

 

Properties:  

Let A, B and C be matrices of same dimensions. Let α and β be two 

scalars. 

1. A+ B = B + A: the sum is commutative, 

2. A+ (B + C) = (A+ B) + C: the sum is associative, 

3. A+ 0 = A: the null matrix is the neutral element of the addition, 

4. (α + β)A = αA+ βA : matrices distribute upon scalars, 

5. α(A+ B) = αA+ αB : scalars distribute upon matrices. 

Examples.  

1) For  and  we have 

2) For  and  we have . 

3) If  and  then  doesn’t exist. 

The sum of two matrices of different orders is not defined. 

4) For  then 

. 
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We can verify that   and . 

5) If  and  then their product is . 

Exercise. 

Let 
 
and  be matrices. 

1. Find matrix C such that A - 2B - C = O. 

2. Find matrix D such that A + B + C - 4D = O 

Correction 

1. A - 2B - C = O is equivalent to C = A - 2B, i.e 

   

2. A + B + C - 4D = O is equivalent to D = ¼(A + B + C) , replacing C = A - 2B we 

get D = ¼ A + ½ B 

  

 

Product of matrices:  

  

 

If  is an m × n matrix 

and  an n × p matrix, 

their product is defined by 

, 

That, is A.B=C with  

   

It is an m × p matrix. 
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Properties:  

Let A, B and C be matrices of same dimensions. Let α and β be scalars. 

1.  A(BC) = (AB)C :   the product is associative, 

2.  A (B + C) = AB + AC  and  (B + C) A = BA+ CA :  

the product distribute upon addition, 

3.  A·× 0 = 0  and 0 ×A = 0 :  , 

3.  Let A be a m × n matrix, then (I is neutral for product of matrix) 

Im x A = A   and   A x In = A. 

Examples.  

 

2) For  and  we have 

. 

3) An interesting case is the product of a row vector by a column vector: 

For  and , then the product is a number (scalar): 

=  

It is the scalar product of the vectors u and v . 

1) Consider  of size 2 × 3 and   

of size 3 × 2. The product is possible, it is a matrix 

of size 2 × 2. To calculates the first coefficient  

C11 = 1×1 + 2×(−1) + 3×1 = 2 

(sum of products of elements of the lign1 and column1) 

We continue for the coefficient c12 with (sum of 

products of elements of the lign1 and column2) 

C12 = 1×2 + 2×1 + 3×1 = 7. 
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Attention  

1) The product of matrices is not commutative in general. 

 is different of  . 

2)  

 and . 

3) Consequently . 

 and . 

Exercise. 

Compute the following operations 

1)

     

2)

      

3)

  
Correction 

1)

 

 

 

2)

 

3)

 

Powers of a matrix:  

In the set of square matrices Mn(K), the multiplication of the matrices is 

an internal operation i.e. :  

if A, B are in Mn(K) then the product A×B is in Mn(K). 

We can then repeat the multiplication: A2 = A× A, A3 = A× A× A. 
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Thus, we can define the successive powers 

A
0

: = In  and   A
p+1

 = A
p

 × A  for all p≥2. 

That is :    A
p

 = A× A× · · · × A  for p factors. 

Example 

We seek to calculate A
p

 for  where p is an integer number.  

We calculate A2, A3 and A4 and we obtain: 

. 

The observation of these first powers makes it possible to think that the 

formula is: 

 

Let us prove this result by induction: It is true for p = 0 (A
p= In).  

We assume that it is true for an integer p and we will prove it for  

p+1. We have, by the definition 

 

Which affirm that for all p≥2  . 

2.2. Particular operations on matrices 

Here are some interesting and useful operations on matrices. 

  

✓ Matrix transpose 

If A = (aij) is an m × n matrix, we define 

the transpose matrix of A, denoted A
T

, 

by 

A
T

 = (aji). 

It is an n × m matrix obtained by exchanging 

rows and columns of the initial matrix. 
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Properties 

(A
T

)
T

 = A,   if A ∈ Mm,n(K), 

(αA)
T

 = αA
T

  if α ∈ K and A ∈ Mm,n(K),  

(A + B)
T

 = A
T

 + B
T

 ,  if A, B ∈ Mm,n(K), 

(A × B)
T

 = BT × A , if A ∈ Mm,n(K) , B ∈ Mn,p(K). 

 

An important case: 

 

✓ Symmetric matrix  

The matrix A is said to be symmetric if  

A
T

 = A 

i.e. if   aij = aji for all i ≠ j. 

 

Symmetric matrix: 

 

✓ Anti-symmetric matrix 

The matrix A is said to be antisymmetric if  

A
T

 = - A 

i.e. if   aij = - aji for all 𝐢 ≠  𝐣. 

 

Symmetric matrix: 

 

✓ Trace of a matrix 

the trace of a square matrix A of order n, 

is the sum of the elements of the diagonal 

main. 

 

Properties 

Let A and B be squares matrices (n × n), then 

1.  tr(A+ B) = trA + tr B, 

2.  tr(αA) = α trA   for all scalars α in K, 

3.  tr(A
T

) = trA, 

4.  tr(A×B) = tr(B×A) 
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Exercices. 

Find x value such that the trace of matrix A is minimal. 

Find x value such that the trace of matrix A is maximal.  

 
Correction 

Let’s consider the function  𝑦 ∶  𝑥 → 𝑦(𝑥) = 𝑡𝑟(𝐴) ;   we have 

      y(x) = 2x3 + 3x2 - 12x. 

y′(x) = 6(x2 + x - 2), y>0 for x < -2 and x > 1, y<0  for -2 < x < 1. 

Then tr(A) is maximal for x = -2 and tr(A) is minimal for x = 1. 

✓ Invertible matrix 

A square matrix A ∈ Mn(K) is said to be invertible (or regular) 

if there exists a matrix B ∈ Mn(K) such that 

A × B = B × A = In. 

In this case, we note it B = A
−1

 , it is unique and it is called inverse 

matrix of A. 

✓ singular matrix 

A non-invertible matrix is said to be singular. 

Properties 

Let A and B be two invertible matrices, then 

o A
−1

 is also invertible and   (A
−1

)
−1

 = A, 

o A×B is also invertible and   (A×B)
−1

=B
−1

×A
−1

, 

o A
T

 is also invertible and   (A
T

)
−1

 = (A
−1

)
 T

. 

Examples: 

1)  Let   , we are looking for its inverse . 

If it exists, we must have 
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,   then ,  then  which deal to 

 

Solutions of this system is :    The inverse is 

. 

2) The identity In is invertible, and its inverse is itself by the equality: 

 In × In = In. 

3) If C is invertible, one can simplify the equality . Indeed: 

multiplying  on the right by  yields to . 

By associativity we’ll get . 

This deals to    which gives . 

Example (singular matrices) ; 

1) Consider . If it exists, it invers  must verifies 

. 

The product never can be equal to identity. So A is a singular matrix. 

2) The zero matrix 0n of size n × n is not invertible because for any matrix 

B we have  B x 0n = 0n, which can never be the identity matrix. 

3 

We are going to see a method to calculate the inverse of any matrix in an 

efficient way. 

3.1. Square 2x2 matrices 

We start with a simple formula for the elementary case of 2x2 matrices. 
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Proposition 

Consider the 2x2 matrix . If  , then is also 

invertible and  

. 

Examples: 

We reconsider the matrix of example 1) above: , we apply 

directly the given formula 

. 

3.2. Gaussian method for inverting matrices 

We will take a look at an efficient approach for finding the inverse of any 

matrix. It is a linear system reformulation of the Gaussian pivot method. 

Method 

To invert a matrix A, first we write the augmented matrix (A | I) then 

we perform elementary operations on the rows of (A | I) until the 

table (I | B) is obtained. We conclude that B = A
−1

. 

✓ Basic row operations: (to do in both sides of (A | I)) 

1. Li  λLi   (λ ≠ 0):  multiply a line by a non-zero scalar. 

2. Li  Li + λLj   (j ≠ i): add to the line Li a multiple of another line Lj. 

3. Li   Lj : we can exchange two lines 

✓ Equivalent matrices  

Two matrices are said to be equivalent if one resuts from the other  

by elementary operations. 

Examples: 

Let be the matrix . We consider the augmented matrix 
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. 

We apply elementary operations to make zeros below the diagonal. 

We will obtain a lower triangular matrix. 

To make 0 appear on the first column, apply L2  L2 - 4L1  for the 

second line and L3  L3 + L1 for the third line: 

 and  . 

Multiply the line L2 to get 1 in the diagonal, apply L2  L2 - 4L1 : 

. 

We repeat the procedure for the second column: 

,  

 

We’ll do the same to make appear zeros above the diagonal:  

We will obtain a upper triangular matrix. 

 , . 

 

Hence the inverse matrix of A is  . 
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4 

4.1. Definition and practical computation 

Definitions 

A being a square matrix of order n.  For all (i,j), 1 ≤ i, j ≤ n, we denote 

by Aij the square matrix of order n − 1 obtained by deleting the i-th 

row and the j-th column of A. 

  

The number  is called cofactor associated to the element aij. 

The matrix whose elements are cofactors  is called the  

co-matrix and is denoted Com(A). 

 

Calculus determinants methods 

The determinant of A, denoted det(A) or |A|, is defined by induction: 

• if n = 1:    det(A) ≡ a11 

• if n ≥ 2: distributing co-matrices upon their corresponding 

elements aij we’ll get : 

1)  distributing along the line i; 

    

or  

2)  distributing along the column j. 
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Applications:  (n=2 and n=3) 

1) case n = 2.: Let the matrix , then 

det(A11) = a22,  det(A12) = a21,  det(A21) = a12,  det(A22) = a11. 

We can calculate det(A) by one of the following formulas (as examples): 

✓ development along line i = 1 :  

   , 

✓ development along column j = 1 :   

   , 

which give the same result. 

  ; 

. 

Example: 

 

2) case n = 3.: Let the matrix , then choosing to 

develop along the first line (i=1),  i.e. the elements , the 

determinants of the corresponding co-matrices are  

, , 

.
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Then  = . 

 

Example: 

   

 

Remark: 

For n ≥ 4, we have to choose a line or a column which contain many zeros 

and distribute along this line [0 x det(Aij) =0]. 

Application:  

1) Let be the matrix . We distribute along the line 1. 

.

 

For the first matrix we distribute along the column 2, for the second 

matrix we will use the rule of Sarrus. 

 

It’s much easier to remember 

 

 

  

 

(Sarrus rule’s) 
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2) Let be the matrix . We distribute along the column 2. 

 

  

           

          

Exercise. 

Calculate the determinant of the following matrices  

  
  

 

Correction 

1.  

2. Let’s develop along the last line :  

 

3. We will use elementary transforms to make appear zeros before developing along columns 

(this will simplify calculus) 

 
then  

 

Again 
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then  

 

      

Exercise. 

Calculate the determinant of the following matrices  

    

Correction 

1.

  

2.

  

4.2. Properties related to determinants 

✓ Properties f determinant 

Let A and B be matrices, then 

o det(AT ) = det(A),  

o det(A-1) = 1/det(A), 

o det(A × B) = det(A) × det(B), 

o if B is equivalent to A (obtained via elementary transforms) then   

det(A) = det(B). 

 

✓ Reversibility 

A matrix A is invertible if and only if det(A) ≠ 0. 
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✓ Determinants of diagonal matrix 

Identic result: The determinant of a diagonal matrix is equal to the 

product of the diagonal terms. 

Exercise. 

Find t values such that the following matrices will be invertible 

       

Correction 

Recall that matrix A is invertible if and only if det(A)≠0. 

 

So, the matrix is invertible far all  

4.3. Rank of a matrix 

Definition and results 

✓ Definition 

The rank of an mxn matrix A, denoted rg(A), is equal to the largest 

integer s such that one can extract from A an invertible square 

matrix of order s (i.e. a nonzero determinant square matrix of order s). 

 

✓ Determinants of triangular 

matrix 

The determinant of an 

upper (or lower) 

triangular matrix is 

equal to the product of 

the diagonal terms. 

 

 



 

121 

 

✓ Results 

Always 0 ≤ rg(A) ≤ min(m, n) 

rg(A) = 0 if and only if all the elements of A are zero. 

Examples: 

1) Let be the matrix . 

 

• Dimension of A is 2 × 3 then s ≤ min{2, 3}, so s = 0, 1 or 2; 

• at least one element of A is different from zero, so s ≠ 0; 

• since the determinant of the sub-matrix composed of the first and 

the third column is non-zero, then s = 2. 

2) Let be the matrix . 

 

• Order of A is 3 × 3 then s ≤ 3; 

• at least one element of A is different from zero, so s ≠ 0; 

• det(A)=0 then s ≠ 3; 

• the determinant of the sub-matrix  is non-zero, then s = 2. 

Exercise. 

Calculate the ranks of the following matrices  

    

Correction 

1.  then .  

     
 then  

2.  then .  

     
 then  
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4.4. Inverse of a matrix 

✓ Theorem 

Let A be an invertible matrix, and C its comatrix. Then we have 

 

Examples: 

Let be the matrix . We have det(A)=2, then A is invertible. 

Calculating the cofactors of all elements of matrix A we’ll get the co-matrix 

.

 

We deduce  

.

 

Exercise. 

Calculate, using two methods, the inverse matrix of  

     

 

Correction 

1. We calculate the comatrix Com(A) (elements are cofactors) 

Com(A)

 

Transpose comatrix :  Com(A)T
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Dividing by det(A) we get : 

 

2. We will use augmented matrix and elementariy transforms 

 

 

 

We deduce :   
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Chap 6 : System of linear equations 

1 

Definition: 

n, p ≥ 1 being integers, a n × p linear system is a set of n linear 

equations with p unknowns  

 

✓ The coefficients aij and the second members bi are given elements of  

 or . The unknowns x1, x2, . . . , xp are to be found in K. 

✓ The homogeneous system associated with (S) is the system obtained 

by replacing bi=0. 

✓ A solution of (S) is a p-tuple (x1, x2, . . . , xp) which satisfies 

simultaneously the n equations of (S). 

✓ Solving (S) is to search for all solutions. 

✓ A system is impossible, or incompatible, if it does not admit a 

solution. 

✓ Two systems are equivalent if they have the same solutions. 

 

Matrix writing: 

If we denote 

,

  

,

 

.

 

Then, the system (S) is equivalent to the matrix writing Ax = b. 
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 equivalent 

 

Exercise. 

Reconsider the matrix  of the precedent exercise. 

1) Write the system equivalent to the matrix equation AX=B. Precise the 

nature of X and B. 

2) Solve the equation AX=B. 

Correction 

1) The matrix equation AX=B is equivalent to the system 

 

where  and  are vectors matrices. 

2) To solve the equation AX=B we need matrix A to be invertible. It is and we have  

 

Consequently, we have X=A-1B and the inverse system of (S) is  
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2 

Consider a system of n equations and n unknowns 

 

This system can be written in matrix form AX = B where 

    and   

 

Cramer’s rule: 

Define the matrix  obtained by replacing the j-th column of 

A by the second member B 

 

The Cramer’s rule says that: if det(A)≠0 (that is A is invertible), then the 

unique solution  of the system (it is also to the matrix equation) is 

given by 

 

Exercise. 

Apply for the system of the exercise below. 

Correction 

The system 
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is equivalent to the matrix equation  

 . 

We have det(A)=1/4 (not zero) then the system (the matrix equation) admits a unique 

solution  given by 

  

 

. 

Comparing with the system (S-1) we notice the same results. 

 

Exercise. 

Resolve the system   
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Correction 

The is equivalent to the matrix equation AX=B where 

 and  

Developing along the first line we get 

 

 

 

 

3 

Stepped system: 

A system (S) is stepped, or Staggered, if the number of first successive 

zero coefficients of each equation is strictly increasing. 

The corresponding matrix is triangular. 

Example: 

The following system is stepped. 
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Method: 

Gaussian pivot method consists to transform a system to a stepped 

one (triangular matrix), we will use elementary operations on lines of this 

system (or on column of the augmented matrix). 

Solutions will be deduced successively because of the 

triangularization. 

Exercise. 

Resolve the system   

 

Correction 

1. Resolution by the Gaussian pivot method:  

we will use elementary transforms to reduce this system to a stepped one (triangular 

matrix) 

 

 

We deduce successively  
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2. Resolution by the Gaussian pivot method in matrix writing: 

 

 

We deduce successively  

 

Exercise. 

Solve the system   

 

Correction 

 

We deduce successively   

Exercise. 

Solve the system   

 
Correction 
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We deduce     then successively    

 

Exercise. 

Consider the linear system

  

 

Discuss according to the real parameter β, the solutions of the system (S). 

Correction 

 

Notice that 6 − β − β2 = (2 − β)(3 + β) we conclude  

1. if β = −3 then the last equation is 0z = 0 :  hens (S) has an infinity of solutions, 

2. if β = 2 then the last equation is 0z = −5 (impossible): hens (S) has no solution, 

3. if β ≠ 2 and β ≠−3  then (S) has a unique solution  

 

Exercise. 

Consider the linear system  

 

 

Discuss according to the real parameter a, the solutions of the system (Sa). 
Correction 

Let us check the determinant of (Sa)  
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(Sa) is a Cramer system if and only a ∈ R \ { −3, 0 } . In this case (Sa) will have a 

unique solution. 

Case a = −3 : the system yields to 

 

Using the Gaussian pivot method, we’ll get 

 

The last equation is true for any value of z and solutions set is  

      

Case a = 0 : the system yields to 

 

Which is equivalent to  so   and 

solutions set is 

     

Case a ∈ R \ { −3, 0 } since it is a linear system and second member is zero then the 

solutions set is 

       

Exercise. 

Consider the linear system

 

 

Discuss according to the real parameter a, the solutions of the system (Sa). 
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Correction 

Let us check the determinant of (Sa)  

 

(Sa) is a Cramer system if and only a ∈ R \ {0 , 4} . In this case (Sa) will have a unique 

solution. 

Case a = 0 : the system yields to 

  which is equivalent to the system  

 

Two equations with 3 unknowns, then putting z as parameter we’ll get 

 and solutions set is  

      

Case a = 4 : the system yields to 

 

Using the Gaussian pivot method, we’ll get 

 

The last equation is impossible, then solutions set is   

Case a ∈ R \ { 0, 4 } system has a unique solutions. Let’s use the Gaussian pivot 

method 
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We get successively , hens 

    . 

4 

Method: 

In this variation, the main is make appear zeros both above and below 

the pivot. In this case we end up with a diagonal system. 

Solutions will be obtained directly because of the diagonalization 

Exercise. 

Solve the equation   

 

Correction 

 

 

 

We deduce successively  

 

 

 


